forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathffn_layer.py
89 lines (73 loc) · 3.17 KB
/
ffn_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of fully connected network."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class FeedFowardNetwork(tf.layers.Layer):
"""Fully connected feedforward network."""
def __init__(self, hidden_size, filter_size, relu_dropout, train, allow_pad):
super(FeedFowardNetwork, self).__init__()
self.hidden_size = hidden_size
self.filter_size = filter_size
self.relu_dropout = relu_dropout
self.train = train
self.allow_pad = allow_pad
self.filter_dense_layer = tf.layers.Dense(
filter_size, use_bias=True, activation=tf.nn.relu, name="filter_layer")
self.output_dense_layer = tf.layers.Dense(
hidden_size, use_bias=True, name="output_layer")
def call(self, x, padding=None):
"""Return outputs of the feedforward network.
Args:
x: tensor with shape [batch_size, length, hidden_size]
padding: (optional) If set, the padding values are temporarily removed
from x (provided self.allow_pad is set). The padding values are placed
back in the output tensor in the same locations.
shape [batch_size, length]
Returns:
Output of the feedforward network.
tensor with shape [batch_size, length, hidden_size]
"""
padding = None if not self.allow_pad else padding
# Retrieve dynamically known shapes
batch_size = tf.shape(x)[0]
length = tf.shape(x)[1]
if padding is not None:
with tf.name_scope("remove_padding"):
# Flatten padding to [batch_size*length]
pad_mask = tf.reshape(padding, [-1])
nonpad_ids = tf.to_int32(tf.where(pad_mask < 1e-9))
# Reshape x to [batch_size*length, hidden_size] to remove padding
x = tf.reshape(x, [-1, self.hidden_size])
x = tf.gather_nd(x, indices=nonpad_ids)
# Reshape x from 2 dimensions to 3 dimensions.
x.set_shape([None, self.hidden_size])
x = tf.expand_dims(x, axis=0)
output = self.filter_dense_layer(x)
if self.train:
output = tf.nn.dropout(output, 1.0 - self.relu_dropout)
output = self.output_dense_layer(output)
if padding is not None:
with tf.name_scope("re_add_padding"):
output = tf.squeeze(output, axis=0)
output = tf.scatter_nd(
indices=nonpad_ids,
updates=output,
shape=[batch_size * length, self.hidden_size]
)
output = tf.reshape(output, [batch_size, length, self.hidden_size])
return output