forked from Kyubyong/transformer
-
Notifications
You must be signed in to change notification settings - Fork 14
/
eval.py
84 lines (67 loc) · 3.11 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
June 2017 by kyubyong park.
https://www.github.com/kyubyong/transformer
'''
from __future__ import print_function
import codecs
import os
import tensorflow as tf
import numpy as np
from hyperparams import Hyperparams as hp
from data_load import load_test_data, load_de_vocab, load_en_vocab
from train import Graph
from nltk.translate.bleu_score import corpus_bleu
def eval():
# Load graph
g = Graph(is_training=False)
print("Graph loaded")
# Load data
X, Sources, Targets = load_test_data()
de2idx, idx2de = load_de_vocab()
en2idx, idx2en = load_en_vocab()
# X, Sources, Targets = X[:33], Sources[:33], Targets[:33]
# Start session
with g.graph.as_default():
sv = tf.train.Supervisor()
with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
## Restore parameters
sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
print("Restored!")
## Get model name
mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name
## Inference
if not os.path.exists('results'): os.mkdir('results')
with codecs.open("results/" + mname, "w", "utf-8") as fout:
list_of_refs, hypotheses = [], []
for i in range(len(X) // hp.batch_size):
### Get mini-batches
x = X[i*hp.batch_size: (i+1)*hp.batch_size]
sources = Sources[i*hp.batch_size: (i+1)*hp.batch_size]
targets = Targets[i*hp.batch_size: (i+1)*hp.batch_size]
### Autoregressive inference
preds = np.zeros((hp.batch_size, hp.maxlen), np.int32)
for j in range(hp.maxlen):
_preds = sess.run(g.preds, {g.x: x, g.y: preds})
preds[:, j] = _preds[:, j]
### Write to file
for source, target, pred in zip(sources, targets, preds): # sentence-wise
got = " ".join(idx2en[idx] for idx in pred).split("</S>")[0].strip()
fout.write("- source: " + source +"\n")
fout.write("- expected: " + target + "\n")
fout.write("- got: " + got + "\n\n")
fout.flush()
# bleu score
ref = target.split()
hypothesis = got.split()
if len(ref) > 3 and len(hypothesis) > 3:
list_of_refs.append([ref])
hypotheses.append(hypothesis)
## Calculate bleu score
score = corpus_bleu(list_of_refs, hypotheses)
fout.write("Bleu Score = " + str(100*score))
if __name__ == '__main__':
eval()
print("Done")