-
Notifications
You must be signed in to change notification settings - Fork 2
/
02e_simulation_grid_kl_comparison.Rmd
161 lines (132 loc) · 4.45 KB
/
02e_simulation_grid_kl_comparison.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
title: "Stochastic Block Model Prior with Ordering Constraints for Gaussian Graphical Models"
author:
- Alessandro Colombi (Supervisor)^[[email protected]]
- Teo Bucci^[[email protected]]
- Filippo Cipriani^[[email protected]]
- Filippo Pagella^[[email protected]]
- Flavia Petruso^[[email protected]]
- Andrea Puricelli^[[email protected]]
- Giulio Venturini^[[email protected]]
output:
pdf_document:
toc: true
toc_depth: 3
number_section: true
#keep_tex: yes
html_document:
toc: true
toc_float: true
number_sections: true
#date: "2023-01-17"
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(
dev = "pdf",
echo = FALSE,
cache = FALSE,
fig.path = "output/",
fig.align = 'center'
)
```
```{r, include = FALSE}
suppressWarnings(suppressPackageStartupMessages(library(tidyverse)))
suppressWarnings(suppressPackageStartupMessages(library(ACutils)))
suppressWarnings(suppressPackageStartupMessages(library(mvtnorm)))
suppressWarnings(suppressPackageStartupMessages(library(salso)))
suppressWarnings(suppressPackageStartupMessages(library(FGM)))
suppressWarnings(suppressPackageStartupMessages(library(gmp)))
suppressWarnings(suppressPackageStartupMessages(library(mcclust)))
suppressWarnings(suppressPackageStartupMessages(library(mcclust.ext)))
suppressWarnings(suppressPackageStartupMessages(library(logr)))
suppressWarnings(suppressPackageStartupMessages(library(tidygraph)))
suppressWarnings(suppressPackageStartupMessages(library(ggraph)))
suppressWarnings(suppressPackageStartupMessages(library(igraph)))
suppressWarnings(suppressPackageStartupMessages(library(pbapply)))
suppressWarnings(suppressPackageStartupMessages(library(latex2exp)))
suppressWarnings(suppressPackageStartupMessages(library(viridis)))
suppressWarnings(suppressPackageStartupMessages(library(knitr)))
suppressWarnings(suppressPackageStartupMessages(library(kableExtra)))
```
```{r, include = FALSE}
paths = c(
"src/utility_functions.R",
"src/bulky_functions.R",
"src/data_generation.R"
)
for(p in paths){
path = file.path(p)
if(file.exists(path)){
source(path)
} else {
cat("File",path,"was not found in directory, please check.")
}
}
```
\newpage
# Kullback-Leibler distances comparison
```{r, include=FALSE, warning = FALSE}
filename_data = file.path("output_noburnin", "simulation_table.rds")
grid = readRDS(file = filename_data)
kl_matrix = NULL
for(i in 1:nrow(grid)){
simulation_id = grid[i,]$simulation_id
sim <-
read_rds(file.path(
"output_noburnin",
"data",
paste("simulation_", simulation_id, ".rds", sep = "")
))
kl_dist = do.call(rbind, lapply(sim$K, function(k) {
ACutils::KL_dist(sim$true_precision, k)
}))
kl_matrix <- cbind(kl_matrix, kl_dist)
}
compare_kl_distances = function(kl_matrix, subset, grid, param, round=FALSE){
labels= sapply(subset,function(x){grid[x,param]})
if(round){
labels = lapply(grid[subset, param], function(x){round(x,2)})
}
# Save current graphical parameters
opar <- par(no.readonly = TRUE)
# Change the margins of the plot (the fourth is the right margin)
par(mar = c(5, 5, 4, 8))
par(mfrow = c(1, 1))
plot(
x = seq_len(dim(kl_matrix[,subset])[1]),
#y = kl_dist,
type = "n",
xlab = "Iterations",
ylab = "K-L distance",
main = "Kullback-Leibler distance",
ylim = range(kl_matrix[,subset]),
log = 'y'
)
vect_n_palette = seq_along(subset)
color = viridis(length(subset))
legend(
"topright",
title = param,
legend = labels,
fill = color,
inset = c(-0.3, 0),
xpd = TRUE
)
matlines(kl_matrix[,subset], col = color, lty = 1, lwd=2)
grid()
}
```
## Varying $B_{\sigma^2}$
```{r kl_dist_comparison_beta_sig2, results = 'asis', out.width="50%", fig.height = 4.5}
compare_kl_distances(kl_matrix, 8:17, grid, "beta_sig2")
```
## Varying $p$
```{r kl_dist_comparison_p, results = 'asis', out.width="50%", fig.height = 4.5}
compare_kl_distances(kl_matrix, 31:40, grid, "p")
```
## Varying $n$
```{r kl_dist_comparison_n, results = 'asis', out.width="50%", fig.height = 4.5}
compare_kl_distances(kl_matrix, 24:30, grid, "n")
```