diff --git a/tests/scripts/run_python_model_tests.sh b/tests/scripts/run_python_model_tests.sh index 3b17ca573123..cd0913470769 100755 --- a/tests/scripts/run_python_model_tests.sh +++ b/tests/scripts/run_python_model_tests.sh @@ -35,7 +35,7 @@ run_python_model_tests_wormhole_b0() { # higher sequence lengths and different formats trigger memory issues pytest models/demos/falcon7b_common/tests/unit_tests/test_falcon_matmuls_and_bmms_with_mixed_precision.py -k "seq_len_128 and in0_BFLOAT16-in1_BFLOAT8_B-out_BFLOAT16-weights_DRAM" pytest tests/ttnn/integration_tests/resnet/test_ttnn_functional_resnet50_new.py -k "pretrained_weight_false" - pytest models/demos/yolov4/demo/demo.py -k "pretrained_weight_false" + WH_ARCH_YAML=wormhole_b0_80_arch_eth_dispatch.yaml pytest models/demos/yolov4/demo/demo.py -k "pretrained_weight_false" # Unet Shallow WH_ARCH_YAML=wormhole_b0_80_arch_eth_dispatch.yaml pytest -svv models/experimental/functional_unet/tests/test_unet_model.py diff --git a/ttnn/cpp/ttnn/operations/data_movement/concat/device/concat_device_operation.cpp b/ttnn/cpp/ttnn/operations/data_movement/concat/device/concat_device_operation.cpp index 7842b75f1805..dd7054b7b434 100644 --- a/ttnn/cpp/ttnn/operations/data_movement/concat/device/concat_device_operation.cpp +++ b/ttnn/cpp/ttnn/operations/data_movement/concat/device/concat_device_operation.cpp @@ -25,7 +25,7 @@ ConcatOpParallelizationStrategy ConcatDeviceOperation::get_parallelization_strat void ConcatDeviceOperation::validate(const std::vector &input_tensors) const { const auto &first_input = input_tensors[0]; - ttnn::SimpleShape shape_first = first_input.get_logical_shape(); + tt::tt_metal::LegacyShape shape_first = first_input.get_legacy_shape(); TT_FATAL(this->dim < shape_first.rank(), "ConcatDeviceOperation dim specified is larger than input tensor rank."); shape_first[this->dim] = 0; bool shard_first = input_tensors[0].is_sharded(); @@ -38,24 +38,12 @@ void ConcatDeviceOperation::validate(const std::vector &input_tensors) c TT_FATAL(in_ref.device() == first_input.device(), "Operands to concat need to be on the same device."); TT_FATAL(in_ref.get_layout() == first_input.get_layout(), "All Tensors should have same layouts."); TT_FATAL(in_ref.get_dtype() == first_input.get_dtype(), "All Tensors should have same dtypes."); - ttnn::SimpleShape curr_shape = in_ref.get_logical_shape(); - + tt::tt_metal::LegacyShape curr_shape = in_ref.get_legacy_shape(); TT_FATAL(curr_shape.rank() == shape_first.rank(), "Input tensor ranks must be equal"); curr_shape[this->dim] = 0; // last tensor can support without any kernel changes if(in_ref.get_layout() == Layout::TILE and in_ref.get_shape().has_tile_padding(this->dim)) { warn_about_alignment = true; - /* // last tensor can support without any kernel changes - TT_FATAL( - !in_ref.get_shape().has_tile_padding(this->dim), - "Tile padding along concatenated dim ({}) not supported for concat yet (tensor: {}).", - this->dim, - i); - TT_FATAL(curr_shape == shape_first, "concat tensors differ in shape across non-concat dimensions."); - if (in_ref.get_layout() == Layout::ROW_MAJOR && this->dim == shape_first.rank() - 1) { - TT_FATAL( - (in_ref.get_logical_shape()[this->dim] * in_ref.element_size()) % in_ref.buffer()->alignment() == 0, - "Current concat implementation requires aligned last dim when concatting on last dim");*/ } TT_FATAL(curr_shape == shape_first, "concat tensors differ in shape across non-concat dimensions."); TT_FATAL(in_ref.is_sharded() == shard_first, "All tensors must be sharded or all must be interleaved");