diff --git a/tests/sweep_framework/sweeps/eltwise/binary/add/add_sharded.py b/tests/sweep_framework/sweeps/eltwise/binary/add/add_sharded.py new file mode 100644 index 000000000000..4cafe7e348d9 --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/binary/add/add_sharded.py @@ -0,0 +1,109 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import json +import torch +import random +import ttnn +import math +from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm +from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 120 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_spec": gen_sharded_spec_unary(16, layouts=["TILE_LAYOUT"]), # add op only supports tiled layout + "input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], + "input_b_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], + }, +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_spec, + input_a_dtype, + input_b_dtype, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + ( + input_shape, + core_grid, + sharding_strategy, + shard_orientation, + tensor_hw_as_shard_shape, + input_layout, + ) = parse_sharding_spec(input_spec) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + torch_input_tensor_b = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype + )(input_shape) + golden_function = ttnn.get_golden_function(ttnn.add) + torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b) + + sharded_config = ttnn.create_sharded_memory_config_( + shape=input_shape, + core_grid=core_grid, + strategy=sharding_strategy, + orientation=shard_orientation, + use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + input_tensor_b = ttnn.from_torch( + torch_input_tensor_b, + dtype=input_b_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.add(input_tensor_a, input_tensor_b, memory_config=sharded_config) + e2e_perf = stop_measuring_time(start_time) + output_tensor = ttnn.to_torch(output_tensor) + + pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) + return [pcc, e2e_perf] diff --git a/tests/sweep_framework/sweeps/eltwise/binary/div/div_sharded.py b/tests/sweep_framework/sweeps/eltwise/binary/div/div_sharded.py new file mode 100644 index 000000000000..613955b26bc2 --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/binary/div/div_sharded.py @@ -0,0 +1,127 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import json +import torch +import random +import ttnn +import math + +import ttnn.device +from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm +from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 120 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_spec": gen_sharded_spec_unary(2, layouts=["TILE_LAYOUT"]), # div op only supports tiled layout + "input_a_dtype": [ttnn.bfloat16], + "input_b_dtype": [ttnn.bfloat16], + "accurate_mode": [True, False], + "round_mode": [None, "floor", "trunc"], + }, +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_spec, + input_a_dtype, + input_b_dtype, + accurate_mode, + round_mode, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + ( + input_shape, + core_grid, + sharding_strategy, + shard_orientation, + tensor_hw_as_shard_shape, + input_layout, + ) = parse_sharding_spec(input_spec) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + if accurate_mode == False: + torch_input_tensor_b = gen_func_with_cast_tt( + partial(torch_random, low=0.1, high=100, dtype=torch.float32), input_b_dtype + )(input_shape) + signs_b = torch.randint(0, 2, input_shape) * 2 - 1 + torch_input_tensor_b *= signs_b + else: + torch_input_tensor_b = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype + )(input_shape) + + golden_function = ttnn.get_golden_function(ttnn.div) + torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b) + + sharded_config = ttnn.create_sharded_memory_config_( + shape=input_shape, + core_grid=core_grid, + strategy=sharding_strategy, + orientation=shard_orientation, + use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + input_tensor_b = ttnn.from_torch( + torch_input_tensor_b, + dtype=input_b_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + start_time = start_measuring_time() + # + output_tensor = ttnn.div( + input_tensor_a, input_tensor_b, accurate_mode=accurate_mode, round_mode=round_mode, memory_config=sharded_config + ) + e2e_perf = stop_measuring_time(start_time) + output_tensor = ttnn.to_torch(output_tensor) + + pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) + return [pcc, e2e_perf] diff --git a/tests/sweep_framework/sweeps/eltwise/binary/div_no_nan/div_no_nan_sharded.py b/tests/sweep_framework/sweeps/eltwise/binary/div_no_nan/div_no_nan_sharded.py new file mode 100644 index 000000000000..6d8ead3f277c --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/binary/div_no_nan/div_no_nan_sharded.py @@ -0,0 +1,126 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import json +import torch +import random +import ttnn +import math + +import ttnn.device +from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm +from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 120 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_spec": gen_sharded_spec_unary(4, layouts=["TILE_LAYOUT"]), # div op only supports tiled layout + "input_a_dtype": [ttnn.bfloat16], + "input_b_dtype": [ttnn.bfloat16], + "accurate_mode": [True, False], + "round_mode": [None, "floor", "trunc"], + }, +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_spec, + input_a_dtype, + input_b_dtype, + accurate_mode, + round_mode, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + ( + input_shape, + core_grid, + sharding_strategy, + shard_orientation, + tensor_hw_as_shard_shape, + input_layout, + ) = parse_sharding_spec(input_spec) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + if accurate_mode == False: + torch_input_tensor_b = gen_func_with_cast_tt( + partial(torch_random, low=0.1, high=100, dtype=torch.float32), input_b_dtype + )(input_shape) + signs_b = torch.randint(0, 2, input_shape) * 2 - 1 + torch_input_tensor_b *= signs_b + else: + torch_input_tensor_b = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype + )(input_shape) + + golden_function = ttnn.get_golden_function(ttnn.div_no_nan) + torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b) + + sharded_config = ttnn.create_sharded_memory_config_( + shape=input_shape, + core_grid=core_grid, + strategy=sharding_strategy, + orientation=shard_orientation, + use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + input_tensor_b = ttnn.from_torch( + torch_input_tensor_b, + dtype=input_b_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + start_time = start_measuring_time() + # + input_tensor_a = ttnn.div_no_nan(input_tensor_a, input_tensor_b, memory_config=sharded_config) + output_tensor = input_tensor_a + e2e_perf = stop_measuring_time(start_time) + output_tensor = ttnn.to_torch(output_tensor) + + pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) + return [pcc, e2e_perf] diff --git a/tests/sweep_framework/sweeps/eltwise/binary/subtract/subtract_sharded.py b/tests/sweep_framework/sweeps/eltwise/binary/subtract/subtract_sharded.py new file mode 100644 index 000000000000..89fb92cc271a --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/binary/subtract/subtract_sharded.py @@ -0,0 +1,109 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import json +import torch +import random +import ttnn +import math +from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm +from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_rand_inf + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 120 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_spec": gen_sharded_spec_unary(16, layouts=["TILE_LAYOUT"]), # subtract op only supports tiled layout + "input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], + "input_b_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], + }, +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_spec, + input_a_dtype, + input_b_dtype, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + ( + input_shape, + core_grid, + sharding_strategy, + shard_orientation, + tensor_hw_as_shard_shape, + input_layout, + ) = parse_sharding_spec(input_spec) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + torch_input_tensor_b = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype + )(input_shape) + golden_function = ttnn.get_golden_function(ttnn.subtract) + torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b) + + sharded_config = ttnn.create_sharded_memory_config_( + shape=input_shape, + core_grid=core_grid, + strategy=sharding_strategy, + orientation=shard_orientation, + use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + input_tensor_b = ttnn.from_torch( + torch_input_tensor_b, + dtype=input_b_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.subtract(input_tensor_a, input_tensor_b, memory_config=sharded_config) + e2e_perf = stop_measuring_time(start_time) + output_tensor = ttnn.to_torch(output_tensor) + + pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) + return [pcc, e2e_perf] diff --git a/tests/sweep_framework/sweeps/eltwise/unary/cbrt/cbrt_sharded.py b/tests/sweep_framework/sweeps/eltwise/unary/cbrt/cbrt_sharded.py new file mode 100644 index 000000000000..01ebd0a51b64 --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/unary/cbrt/cbrt_sharded.py @@ -0,0 +1,95 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import json +import torch +import random +import ttnn +import math +from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 120 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_spec": gen_sharded_spec_unary(32, layouts=["TILE_LAYOUT"]), + "input_a_dtype": [ttnn.bfloat16], + }, +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_spec, + input_a_dtype, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + ( + input_shape, + core_grid, + sharding_strategy, + shard_orientation, + tensor_hw_as_shard_shape, + input_layout, + ) = parse_sharding_spec(input_spec) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=0, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + golden_function = ttnn.get_golden_function(ttnn.cbrt) + torch_output_tensor = golden_function(torch_input_tensor_a) + + sharded_config = ttnn.create_sharded_memory_config_( + shape=input_shape, + core_grid=core_grid, + strategy=sharding_strategy, + orientation=shard_orientation, + use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.cbrt(input_tensor_a, memory_config=sharded_config) + e2e_perf = stop_measuring_time(start_time) + output_tensor = ttnn.to_torch(output_tensor) + + pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) + return [pcc, e2e_perf] diff --git a/tests/sweep_framework/sweeps/eltwise/unary/clamp/clamp_sharded.py b/tests/sweep_framework/sweeps/eltwise/unary/clamp/clamp_sharded.py new file mode 100644 index 000000000000..f4f743fda9f9 --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/unary/clamp/clamp_sharded.py @@ -0,0 +1,104 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import json +import torch +import random +import ttnn +import math +from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt +from tests.sweep_framework.sweep_utils.utils import gen_low_high_scalars + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 120 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_spec": gen_sharded_spec_unary(16, layouts=["TILE_LAYOUT"]), + "input_a_dtype": [ttnn.bfloat16], + "mode": ["min", "max", "both"], + }, +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_spec, + input_a_dtype, + mode, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + ( + input_shape, + core_grid, + sharding_strategy, + shard_orientation, + tensor_hw_as_shard_shape, + input_layout, + ) = parse_sharding_spec(input_spec) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + low, high = gen_low_high_scalars() + + if mode == "min": + high = None + elif mode == "max": + low = None + golden_function = ttnn.get_golden_function(ttnn.clamp) + torch_output_tensor = golden_function(torch_input_tensor_a, min=low, max=high) + + sharded_config = ttnn.create_sharded_memory_config_( + shape=input_shape, + core_grid=core_grid, + strategy=sharding_strategy, + orientation=shard_orientation, + use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.clamp(input_tensor_a, min=low, max=high, memory_config=sharded_config) + e2e_perf = stop_measuring_time(start_time) + output_tensor = ttnn.to_torch(output_tensor) + + pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) + return [pcc, e2e_perf] diff --git a/tests/sweep_framework/sweeps/eltwise/unary/clone/clone_sharded.py b/tests/sweep_framework/sweeps/eltwise/unary/clone/clone_sharded.py new file mode 100644 index 000000000000..c306897e08a5 --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/unary/clone/clone_sharded.py @@ -0,0 +1,97 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import json +import torch +import random +import ttnn +import math +from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt +from tests.sweep_framework.sweep_utils.utils import gen_shapes, tensor_to_dtype + +from models.utility_functions import torch_random, is_wormhole_b0 +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 120 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_spec": gen_sharded_spec_unary(32, layouts=["TILE_LAYOUT"]), + "input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b, ttnn.float32], + "output_dtype": [ttnn.bfloat16, ttnn.bfloat8_b, ttnn.float32], + }, +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_spec, + input_a_dtype, + output_dtype, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + ( + input_shape, + core_grid, + sharding_strategy, + shard_orientation, + tensor_hw_as_shard_shape, + input_layout, + ) = parse_sharding_spec(input_spec) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=0, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + torch_output_tensor = tensor_to_dtype(torch.clone(torch_input_tensor_a), output_dtype) + + sharded_config = ttnn.create_sharded_memory_config_( + shape=input_shape, + core_grid=core_grid, + strategy=sharding_strategy, + orientation=shard_orientation, + use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.clone(input_tensor_a, memory_config=sharded_config, dtype=output_dtype) + e2e_perf = stop_measuring_time(start_time) + output_tensor = ttnn.to_torch(output_tensor) + + pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) + return [pcc, e2e_perf] diff --git a/tests/sweep_framework/sweeps/eltwise/unary/floor/floor_sharded.py b/tests/sweep_framework/sweeps/eltwise/unary/floor/floor_sharded.py new file mode 100644 index 000000000000..ba99d76e674f --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/unary/floor/floor_sharded.py @@ -0,0 +1,103 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import json +import torch +import random +import ttnn +import math +from tests.sweep_framework.sweep_utils.sharding_utils import gen_sharded_spec_unary, parse_sharding_spec +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt + +from models.utility_functions import torch_random, is_wormhole_b0 +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 120 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "nightly": { + "input_spec": gen_sharded_spec_unary(32, layouts=["TILE_LAYOUT"]), + "input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], + }, +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + return False, None + + +def mesh_device_fixture(): + device = ttnn.open_device(device_id=0) + assert ttnn.device.is_wormhole_b0(device), "This op is available for Wormhole_B0 only" + yield (device, "Wormhole_B0") + ttnn.close_device(device) + del device + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_spec, + input_a_dtype, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + ( + input_shape, + core_grid, + sharding_strategy, + shard_orientation, + tensor_hw_as_shard_shape, + input_layout, + ) = parse_sharding_spec(input_spec) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=0, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + golden_function = ttnn.get_golden_function(ttnn.floor) + torch_output_tensor = golden_function(torch_input_tensor_a) + + sharded_config = ttnn.create_sharded_memory_config_( + shape=input_shape, + core_grid=core_grid, + strategy=sharding_strategy, + orientation=shard_orientation, + use_height_and_width_as_shard_shape=tensor_hw_as_shard_shape, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=sharded_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.floor(input_tensor_a, memory_config=sharded_config) + e2e_perf = stop_measuring_time(start_time) + output_tensor = ttnn.to_torch(output_tensor) + + pcc = check_with_pcc(torch_output_tensor, output_tensor, 0.999) + return [pcc, e2e_perf]