-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathtest_multiple_iterations.py
236 lines (188 loc) · 8.73 KB
/
test_multiple_iterations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc.
# SPDX-License-Identifier: Apache-2.0
import ttnn
import json
import torch
import pytest
import numpy as np
from PIL import Image
from loguru import logger
from tqdm.auto import tqdm
from datasets import load_dataset
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
LMSDiscreteScheduler,
)
from models.utility_functions import (
comp_allclose_and_pcc,
enable_persistent_kernel_cache,
disable_persistent_kernel_cache,
)
from models.utility_functions import skip_for_wormhole_b0
from ttnn.model_preprocessing import preprocess_model_parameters
from models.demos.wormhole.stable_diffusion.custom_preprocessing import custom_preprocessor
from models.demos.wormhole.stable_diffusion.tt.ttnn_functional_unet_2d_condition_model import (
UNet2DConditionModel as UNet2D,
)
from torchvision.transforms import ToTensor
def load_inputs(input_path):
with open(input_path) as f:
input_data = json.load(f)
assert input_data, "Input data is empty."
prompt = [item["prompt"] for item in input_data]
return prompt
def constant_prop_time_embeddings(timesteps, sample, time_proj):
timesteps = timesteps[None]
timesteps = timesteps.expand(sample.shape[0])
t_emb = time_proj(timesteps)
return t_emb
def save_image_and_latents(latents, iter, vae, pre_fix="", pre_fix2=""):
pre_fix = "" if pre_fix == "" else f"{pre_fix}_"
pre_fix2 = "" if pre_fix2 == "" else f"{pre_fix2}_"
_latents = 1 / 0.18215 * latents
with torch.no_grad():
image = vae.decode(_latents).sample
# Image post-processing
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images][0]
pil_images.save(f"{pre_fix}{pre_fix2}image_iter_{iter}.png")
def guide(noise_pred, guidance_scale, t): # will return latents
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
return noise_pred
def latent_expansion(latents, scheduler, t):
latent_model_input = torch.cat([latents] * 2, dim=0)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)
return latent_model_input
def calculate_fid_score(imgs_path1, imgs_path2):
fid = FrechetInceptionDistance(normalize=True)
fid.update(imgs_path1, real=False)
fid.update(imgs_path2, real=True)
return fid.compute()
def preprocess_images(image_paths):
images = []
for image_path in image_paths:
image = Image.open(image_path)
image = image.convert("RGB")
image = image.resize((299, 299))
image = ToTensor()(image)
images.append(image)
return torch.stack(images)
def run_demo_inference_diffusiondb(device, reset_seeds, input_path, num_inference_steps, image_size):
disable_persistent_kernel_cache()
height, width = image_size
experiment_name = f"diffusiondb_{height}x{width}"
input_prompt = [
"oil painting frame of Breathtaking mountain range with a clear river running through it, surrounded by tall trees and misty clouds, serene, peaceful, mountain landscape, high detail"
]
logger.info(f"input_prompts: {input_prompt}")
# 1. Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# 3. The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# 4. load the K-LMS scheduler with some fitting parameters.
ttnn_scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
torch_device = "cpu"
vae.to(torch_device)
text_encoder.to(torch_device)
unet.to(torch_device)
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(174) # 10233 Seed generator to create the inital latent noise
batch_size = len(input_prompt)
## First, we get the text_embeddings for the prompt. These embeddings will be used to condition the UNet model.
# Tokenizer and Text Encoder
text_input = tokenizer(
input_prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
# For classifier-free guidance, we need to do two forward passes: one with the conditioned input (text_embeddings),
# and another with the unconditional embeddings (uncond_embeddings).
# In practice, we can concatenate both into a single batch to avoid doing two forward passes.
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
ttnn_text_embeddings = ttnn.from_torch(text_embeddings, dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device)
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
# Initial random noise
latents = torch.randn(
(batch_size, unet.config.in_channels, height // vae_scale_factor, width // vae_scale_factor),
generator=generator,
)
latents = latents.to(torch_device)
ttnn_scheduler.set_timesteps(num_inference_steps)
latents = latents * ttnn_scheduler.init_noise_sigma
ttnn_latents = torch.tensor(latents)
iter = 0
config = unet.config
parameters = preprocess_model_parameters(
initialize_model=lambda: unet, custom_preprocessor=custom_preprocessor, device=device
)
input_height = 64
input_width = 64
reader_patterns_cache = {} if height == 512 and width == 512 else None
model = UNet2D(device, parameters, 2, input_height, input_width, reader_patterns_cache)
# # Denoising loop
for t in tqdm(ttnn_scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
ttnn_latent_model_input = latent_expansion(ttnn_latents, ttnn_scheduler, t)
ttnn_latent_model_input = ttnn.from_torch(
ttnn_latent_model_input, dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device
)
_t = constant_prop_time_embeddings(t, ttnn_latent_model_input, unet.time_proj)
_t = _t.unsqueeze(0).unsqueeze(0)
_t = ttnn.from_torch(_t, dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device)
# predict the noise residual
with torch.no_grad():
ttnn_output = model(
ttnn_latent_model_input, # input
timestep=_t,
encoder_hidden_states=ttnn_text_embeddings,
class_labels=None,
attention_mask=None,
cross_attention_kwargs=None,
return_dict=True,
config=config,
)
noise_pred = ttnn.to_torch(ttnn_output)
# perform guidance
noise_pred = guide(noise_pred, guidance_scale, t)
ttnn_latents = ttnn_scheduler.step(noise_pred, t, ttnn_latents).prev_sample
save_image_and_latents(ttnn_latents, iter, vae, pre_fix=f"{experiment_name}_tt", pre_fix2="")
iter += 1
enable_persistent_kernel_cache()
latents = ttnn_latents
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
with torch.no_grad():
image = vae.decode(latents).sample
# Image post-processing
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images][0]
ttnn_output_path = f"{experiment_name}_ttnn.png"
pil_images.save(ttnn_output_path)
ref_paths = [ref_img_path, ref_img_path]
ttnn_paths = [ttnn_output_path, ttnn_output_path]
ref_images = preprocess_images(ref_paths)
ttnn_images = preprocess_images(ttnn_paths)
def test_tt2_multiple_iteration(device, reset_seeds, input_path):
# 30 iterations, generate 512x512 image
return run_demo_inference_diffusiondb(device, reset_seeds, input_path, 30, (512, 512))