-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathcifar10-fast.py
executable file
·211 lines (174 loc) · 7.05 KB
/
cifar10-fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
import argparse
import numpy as np
import os
import multiprocessing as mp
import tensorflow as tf
from tensorpack import *
from tensorpack.utils import logger
from tensorpack.tfutils.tower import TowerFunc
from tensorpack.tfutils.varreplace import custom_getter_scope
from tensorpack.dataflow import dataset
BATCH = 512
STEPS_PER_EPOCH = 50000 // 512 + 1
TOTAL_EPOCH = 24
WARMUP_EPOCH = 5.0 / 24 * TOTAL_EPOCH
USE_FP16 = True
DATA_FORMAT = "NCHW"
def get_inputs(batch):
return [tf.TensorSpec(
(batch, 3, 32, 32) if DATA_FORMAT == "NCHW" else (batch, 32, 32, 3),
tf.float32, 'input'),
tf.TensorSpec((batch, 10), tf.float32, 'label')]
def build_graph(image, label):
if USE_FP16:
image = tf.cast(image, tf.float16)
def activation(x):
return tf.nn.leaky_relu(x, alpha=0.1)
def residual(name, x, chan):
with tf.variable_scope(name):
x = Conv2D('res1', x, chan, 3)
x = BatchNorm('bn1', x)
x = activation(x)
x = Conv2D('res2', x, chan, 3)
x = BatchNorm('bn2', x)
x = activation(x)
return x
def fp16_getter(getter, *args, **kwargs):
name = args[0] if len(args) else kwargs['name']
if not USE_FP16 or (not name.endswith('/W') and not name.endswith('/b')):
# ignore BN's gamma and beta
return getter(*args, **kwargs)
else:
if kwargs['dtype'] == tf.float16:
kwargs['dtype'] = tf.float32
ret = getter(*args, **kwargs)
return tf.cast(ret, tf.float16)
else:
return getter(*args, **kwargs)
with custom_getter_scope(fp16_getter), \
argscope(Conv2D, activation=tf.identity, use_bias=False), \
argscope([Conv2D, MaxPooling, BatchNorm], data_format=DATA_FORMAT), \
argscope(BatchNorm, momentum=0.8):
with tf.variable_scope('prep'):
l = Conv2D('conv', image, 64, 3)
l = BatchNorm('bn', l)
l = activation(l)
with tf.variable_scope("layer1"):
l = Conv2D('conv', l, 128, 3)
l = MaxPooling('pool', l, 2)
l = BatchNorm('bn', l)
l = activation(l)
l = l + residual('res', l, 128)
with tf.variable_scope("layer2"):
l = Conv2D('conv', l, 256, 3)
l = MaxPooling('pool', l, 2)
l = BatchNorm('bn', l)
l = activation(l)
with tf.variable_scope("layer3"):
l = Conv2D('conv', l, 512, 3)
l = MaxPooling('pool', l, 2)
l = BatchNorm('bn', l)
l = activation(l)
l = l + residual('res', l, 512)
l = tf.reduce_max(l, axis=[2, 3] if DATA_FORMAT == "NCHW" else [1, 2])
l = FullyConnected('fc', l, 10, use_bias=False)
logits = tf.cast(l * 0.125, tf.float32, name='logits')
cost = tf.nn.softmax_cross_entropy_with_logits(labels=label, logits=logits)
cost = tf.reduce_sum(cost)
wd_cost = regularize_cost('.*', l2_regularizer(5e-4 * BATCH), name='regularize_loss')
correct = tf.equal(tf.argmax(logits, axis=1), tf.argmax(label, axis=1), name='correct')
return tf.add_n([cost, wd_cost], name='cost')
def get_data(train_or_test):
isTrain = train_or_test == 'train'
ds = dataset.Cifar10(train_or_test)
cifar10_mean = np.asarray([0.4914, 0.4822, 0.4465], dtype="float32") * 255.
cifar10_invstd = 1.0 / (np.asarray([0.2471, 0.2435, 0.2616], dtype="float32") * 255)
if isTrain:
augmentors = imgaug.AugmentorList([
imgaug.RandomCrop((32, 32)),
imgaug.Flip(horiz=True),
imgaug.RandomCutout(8, 8),
])
def mapf(dp):
img, label = dp
img = (img.astype("float32") - cifar10_mean) * cifar10_invstd
if isTrain:
img = np.pad(img, [(4, 4), (4, 4), (0, 0)], mode='reflect')
img = augmentors.augment(img)
onehot = np.zeros((10, ), dtype=np.float32) + 0.2 / 9
onehot[label] = 0.8
else:
onehot = np.zeros((10, ), dtype=np.float32)
onehot[label] = 1.
if DATA_FORMAT == "NCHW":
img = img.transpose(2, 0, 1)
return img, onehot
if not isTrain:
ds = MapData(ds, mapf)
ds = BatchData(ds, BATCH, remainder=False)
return ds
ds = MultiProcessMapAndBatchDataZMQ(ds, 8, mapf, BATCH, buffer_size=20000)
ds = RepeatedData(ds, -1)
return ds
def run_once(result_queue):
tf.reset_default_graph()
trainer = SimpleTrainer()
trainer.XLA_COMPILE = True
with tf.device('/gpu:0'):
gs = tf.train.get_or_create_global_step()
gs = tf.cast(gs, tf.float32)
# 0.0 -> 0.4 in warmup
# 0.4 -> 0.0 in the rest epochs
lr = tf.where(tf.greater(gs, 5 * STEPS_PER_EPOCH),
(TOTAL_EPOCH * STEPS_PER_EPOCH - gs) / ((TOTAL_EPOCH - WARMUP_EPOCH) * STEPS_PER_EPOCH) * 0.4 / BATCH,
gs / (WARMUP_EPOCH * STEPS_PER_EPOCH) * 0.4 / BATCH
)
trainer.setup_graph(
get_inputs(BATCH),
#StagingInput(QueueInput(get_data('train'), queue=tf.FIFOQueue(300, [tf.float32, tf.int64]))),
#DummyConstantInput([x.shape for x in get_inputs()]),
StagingInput(TFDatasetInput(get_data('train'))),
build_graph,
lambda: tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
)
trainer.train_with_defaults(
callbacks=[
PeriodicTrigger(
InferenceRunner(
get_data('test'), ClassificationError('correct', 'val_acc'),
# We used static shape in training, in order to allow XLA
# But we want dynamic batch size for inference, therefore
# recreate a tower function with different input signature.
tower_func=TowerFunc(build_graph, get_inputs(None))
), every_k_epochs=TOTAL_EPOCH),
RunUpdateOps(),
],
extra_callbacks=[], # disable all default callbacks
monitors=[ScalarPrinter()], # disable other default monitors
steps_per_epoch=STEPS_PER_EPOCH,
max_epoch=TOTAL_EPOCH
)
result_queue.put(trainer.monitors.get_latest('val_acc'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--num-runs', default=1, type=int)
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
os.environ["TF_AUTOTUNE_THRESHOLD"] = '1'
q = mp.Queue()
if args.num_runs == 1:
run_once(q)
logger.info("Val Acc: " + str(q.get()))
else:
val_accs = []
for k in range(args.num_runs):
proc = mp.Process(target=run_once, args=(q,))
proc.start()
val_accs.append(q.get())
proc.join(timeout=5)
proc.terminate()
logger.info("Val Accs: " + str(val_accs))
logger.info("Mean Val Acc: " + str(np.mean(val_accs)))