-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
train_housing.js
109 lines (98 loc) · 3.33 KB
/
train_housing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as argparse from 'argparse';
import * as fs from 'fs';
import * as path from 'path';
import * as shelljs from 'shelljs';
import {getDatasetStats, getNormalizedDatasets} from './data_housing';
import {createModel} from './model_housing';
// tf will be imported dynamically depending on whether the flag `--gpu` is
// set.
let tf;
function parseArgs() {
const parser = new argparse.ArgumentParser({
description: 'TensorFlow.js Quantization Example: Training an MLP for the ' +
'California Housing Price dataset.',
addHelp: true
});
parser.addArgument('--epochs', {
type: 'int',
defaultValue: 200,
help: 'Number of epochs to train the model for.'
});
parser.addArgument('--batchSize', {
type: 'int',
defaultValue: 128,
help: 'Batch size to be used during model training.'
});
parser.addArgument('--validationSplit', {
type: 'float',
defaultValue: 0.2,
help: 'Validation split used for training.'
});
parser.addArgument('--evaluationSplit', {
type: 'float',
defaultValue: 0.1,
help: 'Validation split used for testing after training (evaluation).'
});
parser.addArgument('--modelSavePath', {
type: 'string',
defaultValue: './models/housing/original',
help: 'Path to which the model will be saved after training.'
});
parser.addArgument('--gpu', {
action: 'storeTrue',
help: 'Use tfjs-node-gpu for training (requires CUDA-enabled ' +
'GPU and supporting drivers and libraries.'
});
return parser.parseArgs();
}
async function main() {
const args = parseArgs();
if (args.gpu) {
tf = require('@tensorflow/tfjs-node-gpu');
} else {
tf = require('@tensorflow/tfjs-node');
}
const {count, featureMeans, featureStddevs, labelMean, labelStddev} =
await getDatasetStats();
const {trainXs, trainYs, valXs, valYs, evalXs, evalYs} =
await getNormalizedDatasets(
count, featureMeans, featureStddevs, labelMean, labelStddev,
args.validationSplit, args.evaluationSplit);
const model = createModel();
model.summary();
await model.fit(trainXs, trainYs, {
epochs: args.epochs,
batchSize: args.batchSize,
validationData: [valXs, valYs]
});
const evalOutput = model.evaluate(evalXs, evalYs);
console.log(
`\nEvaluation result:\n` +
` Loss = ${evalOutput.dataSync()[0].toFixed(6)}`);
if (args.modelSavePath != null) {
if (!fs.existsSync(path.dirname(args.modelSavePath))) {
shelljs.mkdir('-p', path.dirname(args.modelSavePath));
}
await model.save(`file://${args.modelSavePath}`);
console.log(`Saved model to path: ${args.modelSavePath}`);
}
}
if (require.main === module) {
main();
}