-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathmain.js
77 lines (67 loc) · 2.36 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs-node');
const argparse = require('argparse');
const data = require('./data');
const model = require('./model');
async function run(epochs, batchSize, modelSavePath) {
await data.loadData();
const {images: trainImages, labels: trainLabels} = data.getTrainData();
model.summary();
let epochBeginTime;
let millisPerStep;
const validationSplit = 0.15;
const numTrainExamplesPerEpoch =
trainImages.shape[0] * (1 - validationSplit);
const numTrainBatchesPerEpoch =
Math.ceil(numTrainExamplesPerEpoch / batchSize);
await model.fit(trainImages, trainLabels, {
epochs,
batchSize,
validationSplit
});
const {images: testImages, labels: testLabels} = data.getTestData();
const evalOutput = model.evaluate(testImages, testLabels);
console.log(
`\nEvaluation result:\n` +
` Loss = ${evalOutput[0].dataSync()[0].toFixed(3)}; `+
`Accuracy = ${evalOutput[1].dataSync()[0].toFixed(3)}`);
if (modelSavePath != null) {
await model.save(`file://${modelSavePath}`);
console.log(`Saved model to path: ${modelSavePath}`);
}
}
const parser = new argparse.ArgumentParser({
description: 'TensorFlow.js-Node MNIST Example.',
add_help: true
});
parser.add_argument('--epochs', {
type: 'int',
default: 20,
help: 'Number of epochs to train the model for.'
});
parser.add_argument('--batch_size', {
type: 'int',
default: 128,
help: 'Batch size to be used during model training.'
})
parser.add_argument('--model_save_path', {
type: 'string',
help: 'Path to which the model will be saved after training.'
});
const args = parser.parse_args();
run(args.epochs, args.batch_size, args.model_save_path);