-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathdata.js
187 lines (163 loc) · 5.64 KB
/
data.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs');
const assert = require('assert');
const fs = require('fs');
const https = require('https');
const util = require('util');
const zlib = require('zlib');
const readFile = util.promisify(fs.readFile);
// MNIST data constants:
const BASE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/';
const TRAIN_IMAGES_FILE = 'train-images-idx3-ubyte';
const TRAIN_LABELS_FILE = 'train-labels-idx1-ubyte';
const TEST_IMAGES_FILE = 't10k-images-idx3-ubyte';
const TEST_LABELS_FILE = 't10k-labels-idx1-ubyte';
const IMAGE_HEADER_MAGIC_NUM = 2051;
const IMAGE_HEADER_BYTES = 16;
const IMAGE_HEIGHT = 28;
const IMAGE_WIDTH = 28;
const IMAGE_FLAT_SIZE = IMAGE_HEIGHT * IMAGE_WIDTH;
const LABEL_HEADER_MAGIC_NUM = 2049;
const LABEL_HEADER_BYTES = 8;
const LABEL_RECORD_BYTE = 1;
const LABEL_FLAT_SIZE = 10;
// Downloads a test file only once and returns the buffer for the file.
async function fetchOnceAndSaveToDiskWithBuffer(filename) {
return new Promise(resolve => {
const url = `${BASE_URL}${filename}.gz`;
if (fs.existsSync(filename)) {
resolve(readFile(filename));
return;
}
const file = fs.createWriteStream(filename);
console.log(` * Downloading from: ${url}`);
https.get(url, (response) => {
const unzip = zlib.createGunzip();
response.pipe(unzip).pipe(file);
unzip.on('end', () => {
resolve(readFile(filename));
});
});
});
}
function loadHeaderValues(buffer, headerLength) {
const headerValues = [];
for (let i = 0; i < headerLength / 4; i++) {
// Header data is stored in-order (aka big-endian)
headerValues[i] = buffer.readUInt32BE(i * 4);
}
return headerValues;
}
async function loadImages(filename) {
const buffer = await fetchOnceAndSaveToDiskWithBuffer(filename);
const headerBytes = IMAGE_HEADER_BYTES;
const recordBytes = IMAGE_HEIGHT * IMAGE_WIDTH;
const headerValues = loadHeaderValues(buffer, headerBytes);
assert.equal(headerValues[0], IMAGE_HEADER_MAGIC_NUM);
assert.equal(headerValues[2], IMAGE_HEIGHT);
assert.equal(headerValues[3], IMAGE_WIDTH);
const images = [];
let index = headerBytes;
while (index < buffer.byteLength) {
const array = new Float32Array(recordBytes);
for (let i = 0; i < recordBytes; i++) {
// Normalize the pixel values into the 0-1 interval, from
// the original 0-255 interval.
array[i] = buffer.readUInt8(index++) / 255;
}
images.push(array);
}
assert.equal(images.length, headerValues[1]);
return images;
}
async function loadLabels(filename) {
const buffer = await fetchOnceAndSaveToDiskWithBuffer(filename);
const headerBytes = LABEL_HEADER_BYTES;
const recordBytes = LABEL_RECORD_BYTE;
const headerValues = loadHeaderValues(buffer, headerBytes);
assert.equal(headerValues[0], LABEL_HEADER_MAGIC_NUM);
const labels = [];
let index = headerBytes;
while (index < buffer.byteLength) {
const array = new Int32Array(recordBytes);
for (let i = 0; i < recordBytes; i++) {
array[i] = buffer.readUInt8(index++);
}
labels.push(array);
}
assert.equal(labels.length, headerValues[1]);
return labels;
}
/** Helper class to handle loading training and test data. */
class MnistDataset {
constructor() {
this.dataset = null;
this.trainSize = 0;
this.testSize = 0;
this.trainBatchIndex = 0;
this.testBatchIndex = 0;
}
/** Loads training and test data. */
async loadData() {
this.dataset = await Promise.all([
loadImages(TRAIN_IMAGES_FILE), loadLabels(TRAIN_LABELS_FILE),
loadImages(TEST_IMAGES_FILE), loadLabels(TEST_LABELS_FILE)
]);
this.trainSize = this.dataset[0].length;
this.testSize = this.dataset[2].length;
}
getTrainData() {
return this.getData_(true);
}
getTestData() {
return this.getData_(false);
}
getData_(isTrainingData) {
let imagesIndex;
let labelsIndex;
if (isTrainingData) {
imagesIndex = 0;
labelsIndex = 1;
} else {
imagesIndex = 2;
labelsIndex = 3;
}
const size = this.dataset[imagesIndex].length;
tf.util.assert(
this.dataset[labelsIndex].length === size,
`Mismatch in the number of images (${size}) and ` +
`the number of labels (${this.dataset[labelsIndex].length})`);
// Only create one big array to hold batch of images.
const imagesShape = [size, IMAGE_HEIGHT, IMAGE_WIDTH, 1];
const images = new Float32Array(tf.util.sizeFromShape(imagesShape));
const labels = new Int32Array(tf.util.sizeFromShape([size, 1]));
let imageOffset = 0;
let labelOffset = 0;
for (let i = 0; i < size; ++i) {
images.set(this.dataset[imagesIndex][i], imageOffset);
labels.set(this.dataset[labelsIndex][i], labelOffset);
imageOffset += IMAGE_FLAT_SIZE;
labelOffset += 1;
}
return {
images: tf.tensor4d(images, imagesShape),
labels: tf.oneHot(tf.tensor1d(labels, 'int32'), LABEL_FLAT_SIZE).toFloat()
};
}
}
module.exports = new MnistDataset();