-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathgan_test.js
147 lines (134 loc) · 5.65 KB
/
gan_test.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs-node');
const gan = require('./gan');
describe('ACGAN', () => {
it('buildGenerator', () => {
const latentSize = 5;
const generator = gan.buildGenerator(latentSize);
expect(generator.inputs.length).toEqual(2);
// Latent vector input.
expect(generator.inputs[0].shape).toEqual([null, 5]);
// MNIST digit class input.
expect(generator.inputs[1].shape).toEqual([null, 1]);
expect(generator.outputs.length).toEqual(1);
// MNIST image tensor output.
expect(generator.outputs[0].shape).toEqual([null, 28, 28, 1]);
// Test generator.predict().
const latentInput = tf.randomUniform([2, 5]);
const classInput = tf.tensor2d([[0], [1]]);
const numTensors0 = tf.memory().numTensors;
const output = generator.predict([latentInput, classInput]);
expect(output.shape).toEqual([2, 28, 28, 1]);
tf.dispose(output);
// Assert no memory leak.
expect(tf.memory().numTensors).toEqual(numTensors0);
});
it('buildDiscriminator', () => {
const discriminator = gan.buildDiscriminator();
expect(discriminator.inputs.length).toEqual(1);
// MNIST image input.
expect(discriminator.inputs[0].shape).toEqual([null, 28, 28, 1]);
expect(discriminator.outputs.length).toEqual(2);
// Binary realness output.
expect(discriminator.outputs[0].shape).toEqual([null, 1]);
// 10-class classification output.
expect(discriminator.outputs[1].shape).toEqual([null, 10]);
});
it('trainDiscriminatorOneStep', async () => {
const numExamples = 4;
const xTrain = tf.randomNormal([numExamples, 28, 28, 1]);
const yTrain = tf.randomUniform([numExamples, 1]);
let batchStart = 0;
const batchSize = 2;
const latentSize = 5;
const generator = gan.buildGenerator(latentSize);
const discriminator = gan.buildDiscriminator();
discriminator.compile({
optimizer: tf.train.adam(1e-3),
loss: ['binaryCrossentropy', 'sparseCategoricalCrossentropy']
});
// Burn-in training call.
await gan.trainDiscriminatorOneStep(
xTrain, yTrain, batchStart, batchSize, latentSize, generator,
discriminator);
// Actually-tested training call.
const numTensors0 = tf.memory().numTensors;
batchStart += 2;
const losses = await gan.trainDiscriminatorOneStep(
xTrain, yTrain, batchStart, batchSize, latentSize, generator,
discriminator);
expect(losses.length).toEqual(3);
// Total loss should be equal to the sum of the two component losses.
expect(losses[0]).toBeCloseTo(losses[1] + losses[2]);
expect(losses[1]).toBeGreaterThan(0);
expect(losses[2]).toBeGreaterThan(0);
// Assert no memory leak.
expect(tf.memory().numTensors).toEqual(numTensors0);
});
it('trainCombinedModelOneStep', async () => {
const latentSize = 5;
const generator = gan.buildGenerator(latentSize);
const discriminator = gan.buildDiscriminator();
const optimizer = tf.train.adam(1e-3);
const model = gan.buildCombinedModel(
latentSize, generator, discriminator, optimizer);
expect(model.inputs.length).toEqual(2);
expect(model.inputs[0].shape).toEqual([null, 5]);
expect(model.inputs[1].shape).toEqual([null, 1]);
expect(model.outputs.length).toEqual(2);
expect(model.outputs[0].shape).toEqual([null, 1]);
expect(model.outputs[1].shape).toEqual([null, 10]);
const batchSize = 4;
// Burn-in training call.
await gan.trainCombinedModelOneStep(batchSize, latentSize, model);
const discriminatorOldWeights =
discriminator.getWeights().map(w => w.dataSync());
const generatorOldWeights =
generator.getWeights().map(w => w.dataSync());
// Actually-tested training call.
const numTensors0 = tf.memory().numTensors;
const losses =
await gan.trainCombinedModelOneStep(batchSize, latentSize, model);
expect(losses.length).toEqual(3);
// Total loss should be equal to the sum of the two component losses.
expect(losses[0]).toBeCloseTo(losses[1] + losses[2]);
expect(losses[1]).toBeGreaterThan(0);
expect(losses[2]).toBeGreaterThan(0);
// Assert no memory leak.
expect(tf.memory().numTensors).toEqual(numTensors0);
const discriminatorNewWeights =
discriminator.getWeights().map(w => w.dataSync());
const generatorNewWeights =
generator.getWeights().map(w => w.dataSync());
// Assert that the discriminator's weights are not changed by the training
// step.
discriminatorOldWeights.forEach(((oldValue, i) => {
const maxAbsDiff =
tf.tensor1d(discriminatorNewWeights[i]).sub(tf.tensor1d(oldValue))
.abs().max().arraySync();
expect(maxAbsDiff).toEqual(0);
}));
// Assert that the generator's weights are changed by the training step.
generatorNewWeights.forEach(((oldValue, i) => {
const maxAbsDiff =
tf.tensor1d(generatorOldWeights[i]).sub(tf.tensor1d(oldValue))
.abs().max().arraySync();
expect(maxAbsDiff).toBeGreaterThan(0);
}));
});
});