-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathworker.js
319 lines (294 loc) · 9.75 KB
/
worker.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs');
class CharacterTable {
/**
* Constructor of CharacterTable.
* @param chars A string that contains the characters that can appear
* in the input.
*/
constructor(chars) {
this.chars = chars;
this.charIndices = {};
this.indicesChar = {};
this.size = this.chars.length;
for (let i = 0; i < this.size; ++i) {
const char = this.chars[i];
if (this.charIndices[char] != null) {
throw new Error(`Duplicate character '${char}'`);
}
this.charIndices[this.chars[i]] = i;
this.indicesChar[i] = this.chars[i];
}
}
/**
* Convert a string into a one-hot encoded tensor.
*
* @param str The input string.
* @param numRows Number of rows of the output tensor.
* @returns The one-hot encoded 2D tensor.
* @throws If `str` contains any characters outside the `CharacterTable`'s
* vocabulary.
*/
encode(str, numRows) {
const buf = tf.buffer([numRows, this.size]);
for (let i = 0; i < str.length; ++i) {
const char = str[i];
if (this.charIndices[char] == null) {
throw new Error(`Unknown character: '${char}'`);
}
buf.set(1, i, this.charIndices[char]);
}
return buf.toTensor().as2D(numRows, this.size);
}
encodeBatch(strings, numRows) {
const numExamples = strings.length;
const buf = tf.buffer([numExamples, numRows, this.size]);
for (let n = 0; n < numExamples; ++n) {
const str = strings[n];
for (let i = 0; i < str.length; ++i) {
const char = str[i];
if (this.charIndices[char] == null) {
throw new Error(`Unknown character: '${char}'`);
}
buf.set(1, n, i, this.charIndices[char]);
}
}
return buf.toTensor().as3D(numExamples, numRows, this.size);
}
/**
* Convert a 2D tensor into a string with the CharacterTable's vocabulary.
*
* @param x Input 2D tensor.
* @param calcArgmax Whether to perform `argMax` operation on `x` before
* indexing into the `CharacterTable`'s vocabulary.
* @returns The decoded string.
*/
decode(x, calcArgmax = true) {
return tf.tidy(() => {
if (calcArgmax) {
x = x.argMax(1);
}
const xData = x.dataSync(); // TODO(cais): Performance implication?
let output = '';
for (const index of Array.from(xData)) {
output += this.indicesChar[index];
}
return output;
});
}
}
/**
* Generate examples.
*
* Each example consists of a question, e.g., '123+456' and and an
* answer, e.g., '579'.
*
* @param digits Maximum number of digits of each operand of the
* @param numExamples Number of examples to generate.
* @param invert Whether to invert the strings in the question.
* @returns The generated examples.
*/
function generateData(digits, numExamples, invert) {
const digitArray = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];
const arraySize = digitArray.length;
const output = [];
const maxLen = digits + 1 + digits;
const f = () => {
let str = '';
while (str.length < digits) {
const index = Math.floor(Math.random() * arraySize);
str += digitArray[index];
}
return Number.parseInt(str);
};
const seen = new Set();
while (output.length < numExamples) {
const a = f();
const b = f();
const sorted = b > a ? [a, b] : [b, a];
const key = sorted[0] + '`' + sorted[1];
if (seen.has(key)) {
continue;
}
seen.add(key);
// Pad the data with spaces such that it is always maxLen.
const q = `${a}+${b}`;
const query = q + ' '.repeat(maxLen - q.length);
let ans = (a + b).toString();
// Answer can be of maximum size `digits + 1`.
ans += ' '.repeat(digits + 1 - ans.length);
if (invert) {
throw new Error('invert is not implemented yet');
}
output.push([query, ans]);
}
return output;
}
function convertDataToTensors(data, charTable, digits) {
const maxLen = digits + 1 + digits;
const questions = data.map(datum => datum[0]);
const answers = data.map(datum => datum[1]);
return [
charTable.encodeBatch(questions, maxLen),
charTable.encodeBatch(answers, digits + 1),
];
}
function createAndCompileModel(
layers, hiddenSize, rnnType, digits, vocabularySize) {
const maxLen = digits + 1 + digits;
const model = tf.sequential();
switch (rnnType) {
case 'SimpleRNN':
model.add(tf.layers.simpleRNN({
units: hiddenSize,
recurrentInitializer: 'glorotNormal',
inputShape: [maxLen, vocabularySize]
}));
break;
case 'GRU':
model.add(tf.layers.gru({
units: hiddenSize,
recurrentInitializer: 'glorotNormal',
inputShape: [maxLen, vocabularySize]
}));
break;
case 'LSTM':
model.add(tf.layers.lstm({
units: hiddenSize,
recurrentInitializer: 'glorotNormal',
inputShape: [maxLen, vocabularySize]
}));
break;
default:
throw new Error(`Unsupported RNN type: '${rnnType}'`);
}
model.add(tf.layers.repeatVector({ n: digits + 1 }));
switch (rnnType) {
case 'SimpleRNN':
model.add(tf.layers.simpleRNN({
units: hiddenSize,
recurrentInitializer: 'glorotNormal',
returnSequences: true
}));
break;
case 'GRU':
model.add(tf.layers.gru({
units: hiddenSize,
recurrentInitializer: 'glorotNormal',
returnSequences: true
}));
break;
case 'LSTM':
model.add(tf.layers.lstm({
units: hiddenSize,
recurrentInitializer: 'glorotNormal',
returnSequences: true
}));
break;
default:
throw new Error(`Unsupported RNN type: '${rnnType}'`);
}
model.add(tf.layers.timeDistributed(
{ layer: tf.layers.dense({ units: vocabularySize }) }));
model.add(tf.layers.activation({ activation: 'softmax' }));
model.compile({
loss: 'categoricalCrossentropy',
optimizer: 'adam',
metrics: ['accuracy']
});
return model;
}
class AdditionRNNDemo {
constructor(digits, trainingSize, rnnType, layers, hiddenSize) {
// Prepare training data.
const chars = '0123456789+ ';
this.charTable = new CharacterTable(chars);
console.log('Generating training data');
const data = generateData(digits, trainingSize, false);
const split = Math.floor(trainingSize * 0.9);
this.trainData = data.slice(0, split);
this.testData = data.slice(split);
[this.trainXs, this.trainYs] =
convertDataToTensors(this.trainData, this.charTable, digits);
[this.testXs, this.testYs] =
convertDataToTensors(this.testData, this.charTable, digits);
this.model = createAndCompileModel(
layers, hiddenSize, rnnType, digits, chars.length);
}
async train(iterations, batchSize, numTestExamples) {
const lossValues = [[], []];
const accuracyValues = [[], []];
for (let i = 0; i < iterations; ++i) {
const beginMs = performance.now();
const history = await this.model.fit(this.trainXs, this.trainYs, {
epochs: 1,
batchSize,
validationData: [this.testXs, this.testYs],
yieldEvery: 'epoch'
});
const elapsedMs = performance.now() - beginMs;
const modelFitTime = elapsedMs / 1000;
const trainLoss = history.history['loss'][0];
const trainAccuracy = history.history['acc'][0];
const valLoss = history.history['val_loss'][0];
const valAccuracy = history.history['val_acc'][0];
lossValues[0].push({ 'x': i, 'y': trainLoss });
lossValues[1].push({ 'x': i, 'y': valLoss });
accuracyValues[0].push({ 'x': i, 'y': trainAccuracy });
accuracyValues[1].push({ 'x': i, 'y': valAccuracy });
self.postMessage({
isPredict: true,
i, iterations, modelFitTime,
lossValues, accuracyValues,
});
if (this.testXsForDisplay == null ||
this.testXsForDisplay.shape[0] !== numTestExamples) {
if (this.textXsForDisplay) {
this.textXsForDisplay.dispose();
}
this.testXsForDisplay = this.testXs.slice(
[0, 0, 0],
[numTestExamples, this.testXs.shape[1], this.testXs.shape[2]]);
}
const examples = [];
const isCorrect = [];
tf.tidy(() => {
const predictOut = this.model.predict(this.testXsForDisplay);
for (let k = 0; k < numTestExamples; ++k) {
const scores =
predictOut
.slice(
[k, 0, 0], [1, predictOut.shape[1], predictOut.shape[2]])
.as2D(predictOut.shape[1], predictOut.shape[2]);
const decoded = this.charTable.decode(scores);
examples.push(this.testData[k][0] + ' = ' + decoded);
isCorrect.push(this.testData[k][1].trim() === decoded.trim());
}
});
self.postMessage({
isPredict: false,
isCorrect, examples
});
}
}
}
self.addEventListener('message', async (e) => {
const { digits, trainingSize, rnnType, layers, hiddenSize, trainIterations, batchSize, numTestExamples } = e.data;
const demo = new AdditionRNNDemo(digits, trainingSize, rnnType, layers, hiddenSize);
await demo.train(trainIterations, batchSize, numTestExamples);
})