diff --git a/site/en/hub/common_saved_model_apis/images.md b/site/en/hub/common_saved_model_apis/images.md
index 9754d52feed..5413f0adc07 100644
--- a/site/en/hub/common_saved_model_apis/images.md
+++ b/site/en/hub/common_saved_model_apis/images.md
@@ -70,7 +70,7 @@ consumer. The SavedModel itself should not perform dropout on the actual outputs
Reusable SavedModels for image feature vectors are used in
* the Colab tutorial
- [Retraining an Image Classifier](https://colab.research.google.com/github/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/tf2_image_retraining.ipynb),
+ [Retraining an Image Classifier](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_image_retraining.ipynb),
diff --git a/site/en/hub/common_saved_model_apis/text.md b/site/en/hub/common_saved_model_apis/text.md
index c618b02d9f1..209319f27a9 100644
--- a/site/en/hub/common_saved_model_apis/text.md
+++ b/site/en/hub/common_saved_model_apis/text.md
@@ -94,7 +94,7 @@ distributed way. For example
### Examples
* Colab tutorial
- [Text Classification with Movie Reviews](https://colab.research.google.com/github/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/tf2_text_classification.ipynb).
+ [Text Classification with Movie Reviews](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_text_classification.ipynb).
diff --git a/site/en/hub/installation.md b/site/en/hub/installation.md
index 33594cd3079..2381fbea614 100644
--- a/site/en/hub/installation.md
+++ b/site/en/hub/installation.md
@@ -50,8 +50,8 @@ $ pip install --upgrade tf-hub-nightly
- [Library overview](lib_overview.md)
- Tutorials:
- - [Text classification](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/tf2_text_classification.ipynb)
- - [Image classification](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/tf2_image_retraining.ipynb)
+ - [Text classification](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_text_classification.ipynb)
+ - [Image classification](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_image_retraining.ipynb)
- Additional examples
[on GitHub](https://github.com/tensorflow/hub/blob/master/examples/README.md)
- Find models on [tfhub.dev](https://tfhub.dev).
\ No newline at end of file
diff --git a/site/en/hub/migration_tf2.md b/site/en/hub/migration_tf2.md
index 24c1bf14c4d..c2cc4b50759 100644
--- a/site/en/hub/migration_tf2.md
+++ b/site/en/hub/migration_tf2.md
@@ -46,10 +46,10 @@ model = tf.keras.Sequential([
...])
```
-Many tutorials show these APIs in action. See in particular
+Many tutorials show these APIs in action. Here are some examples:
-* [Text classification example notebook](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/tf2_text_classification.ipynb)
-* [Image classification example notebook](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/tf2_image_retraining.ipynb)
+* [Text classification example notebook](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_text_classification.ipynb)
+* [Image classification example notebook](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_image_retraining.ipynb)
### Using the new API in Estimator training
diff --git a/site/en/hub/tf2_saved_model.md b/site/en/hub/tf2_saved_model.md
index 641f9b3517b..e41337b2548 100644
--- a/site/en/hub/tf2_saved_model.md
+++ b/site/en/hub/tf2_saved_model.md
@@ -51,7 +51,7 @@ model = tf.keras.Sequential([
```
The [Text classification
-colab](https://colab.research.google.com/github/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/tf2_text_classification.ipynb)
+colab](https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_text_classification.ipynb)
is a complete example how to train and evaluate such a classifier.
The model weights in a `hub.KerasLayer` are set to non-trainable by default.
@@ -244,7 +244,7 @@ to the Keras model, and runs the SavedModel's computation in training
mode (think of dropout etc.).
The [image classification
-colab](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/tf2_image_retraining.ipynb)
+colab](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_image_retraining.ipynb)
contains an end-to-end example with optional fine-tuning.
#### Re-exporting the fine-tuning result
diff --git a/site/en/hub/tutorials/text_cookbook.md b/site/en/hub/tutorials/text_cookbook.md
index 0ac9c6d6df3..dee9c1cf466 100644
--- a/site/en/hub/tutorials/text_cookbook.md
+++ b/site/en/hub/tutorials/text_cookbook.md
@@ -34,7 +34,7 @@ library for tokenization and preprocessing.
### Kaggle
-[IMDB classification on Kaggle](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/text_classification_with_tf_hub_on_kaggle.ipynb) -
+[IMDB classification on Kaggle](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/text_classification_with_tf_hub_on_kaggle.ipynb) -
shows how to easily interact with a Kaggle competition from a Colab, including
downloading the data and submitting the results.
@@ -43,14 +43,14 @@ downloading the data and submitting the results.
[Text classification](https://www.tensorflow.org/hub/tutorials/text_classification_with_tf_hub) | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png) | | | | |
[Text classification with Keras](https://www.tensorflow.org/tutorials/keras/text_classification_with_hub) | | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png) | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png) | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png) | |
[Predicting Movie Review Sentiment with BERT on TF Hub](https://github.com/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb) | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png) | | | | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png) |
-[IMDB classification on Kaggle](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/text_classification_with_tf_hub_on_kaggle.ipynb) | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png) | | | | | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png)
+[IMDB classification on Kaggle](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/text_classification_with_tf_hub_on_kaggle.ipynb) | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png) | | | | | ![done](https://www.gstatic.com/images/icons/material/system_gm/1x/bigtop_done_googblue_18dp.png)
### Bangla task with FastText embeddings
TensorFlow Hub does not currently offer a module in every language. The
following tutorial shows how to leverage TensorFlow Hub for fast experimentation
and modular ML development.
-[Bangla Article Classifier](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/bangla_article_classifier.ipynb) -
+[Bangla Article Classifier](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/bangla_article_classifier.ipynb) -
demonstrates how to create a reusable TensorFlow Hub text embedding, and use it
to train a Keras classifier for
[BARD Bangla Article dataset](https://github.com/tanvirfahim15/BARD-Bangla-Article-Classifier).
@@ -64,24 +64,24 @@ setup (no training examples).
### Basic
-[Semantic similarity](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder.ipynb) -
+[Semantic similarity](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder.ipynb) -
shows how to use the sentence encoder module to compute sentence similarity.
### Cross-lingual
-[Cross-lingual semantic similarity](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/cross_lingual_similarity_with_tf_hub_multilingual_universal_encoder.ipynb) -
+[Cross-lingual semantic similarity](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/cross_lingual_similarity_with_tf_hub_multilingual_universal_encoder.ipynb) -
shows how to use one of the cross-lingual sentence encoders to compute sentence
similarity across languages.
### Semantic retrieval
-[Semantic retrieval](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/retrieval_with_tf_hub_universal_encoder_qa.ipynb) -
+[Semantic retrieval](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/retrieval_with_tf_hub_universal_encoder_qa.ipynb) -
shows how to use Q/A sentence encoder to index a collection of documents for
retrieval based on semantic similarity.
### SentencePiece input
-[Semantic similarity with universal encoder lite](https://github.com/tensorflow/docs/blob/master/g3doc/en/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder_lite.ipynb) -
+[Semantic similarity with universal encoder lite](https://github.com/tensorflow/docs/blob/master/site/en/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder_lite.ipynb) -
shows how to use sentence encoder modules that accept
[SentencePiece](https://github.com/google/sentencepiece) ids on input instead of
text.