forked from cuuupid/cog-marker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
124 lines (104 loc) · 4.73 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import os
from typing import Dict, Optional
import ray
from tqdm import tqdm
import math
from marker.convert import convert_single_pdf, get_length_of_text
from marker.models import load_all_models
from marker.settings import settings
from marker.logger import configure_logging
import traceback
import json
configure_logging()
@ray.remote(num_cpus=settings.RAY_CORES_PER_WORKER, num_gpus=.05 if settings.CUDA else 0)
def process_single_pdf(fname: str, out_folder: str, model_refs, metadata: Optional[Dict] = None, min_length: Optional[int] = None):
out_filename = fname.rsplit(".", 1)[0] + ".md"
out_filename = os.path.join(out_folder, os.path.basename(out_filename))
out_meta_filename = out_filename.rsplit(".", 1)[0] + "_meta.json"
if os.path.exists(out_filename):
return
try:
# Skip trying to convert files that don't have a lot of embedded text
# This can indicate that they were scanned, and not OCRed properly
# Usually these files are not recent/high-quality
if min_length:
length = get_length_of_text(fname)
if length < min_length:
return
full_text, out_metadata = convert_single_pdf(fname, model_refs, metadata=metadata)
if len(full_text.strip()) > 0:
with open(out_filename, "w+", encoding='utf-8') as f:
f.write(full_text)
with open(out_meta_filename, "w+") as f:
f.write(json.dumps(out_metadata, indent=4))
else:
print(f"Empty file: {fname}. Could not convert.")
except Exception as e:
print(f"Error converting {fname}: {e}")
print(traceback.format_exc())
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert multiple pdfs to markdown.")
parser.add_argument("in_folder", help="Input folder with pdfs.")
parser.add_argument("out_folder", help="Output folder")
parser.add_argument("--chunk_idx", type=int, default=0, help="Chunk index to convert")
parser.add_argument("--num_chunks", type=int, default=1, help="Number of chunks being processed in parallel")
parser.add_argument("--max", type=int, default=None, help="Maximum number of pdfs to convert")
parser.add_argument("--workers", type=int, default=5, help="Number of worker processes to use")
parser.add_argument("--metadata_file", type=str, default=None, help="Metadata json file to use for filtering")
parser.add_argument("--min_length", type=int, default=None, help="Minimum length of pdf to convert")
args = parser.parse_args()
in_folder = os.path.abspath(args.in_folder)
out_folder = os.path.abspath(args.out_folder)
files = [os.path.join(in_folder, f) for f in os.listdir(in_folder)]
os.makedirs(out_folder, exist_ok=True)
# Handle chunks if we're processing in parallel
# Ensure we get all files into a chunk
chunk_size = math.ceil(len(files) / args.num_chunks)
start_idx = args.chunk_idx * chunk_size
end_idx = start_idx + chunk_size
files_to_convert = files[start_idx:end_idx]
# Limit files converted if needed
if args.max:
files_to_convert = files_to_convert[:args.max]
metadata = {}
if args.metadata_file:
metadata_file = os.path.abspath(args.metadata_file)
with open(metadata_file, "r") as f:
metadata = json.load(f)
total_processes = min(len(files_to_convert), args.workers)
ray.init(
num_cpus=total_processes,
num_gpus=1 if settings.CUDA else 0,
storage=settings.RAY_CACHE_PATH,
_temp_dir=settings.RAY_CACHE_PATH,
dashboard_host=settings.RAY_DASHBOARD_HOST,
log_to_driver=settings.DEBUG
)
model_lst = load_all_models()
model_refs = ray.put(model_lst)
# Dynamically set GPU allocation per task based on GPU ram
gpu_frac = settings.VRAM_PER_TASK / settings.INFERENCE_RAM if settings.CUDA else 0
print(f"Converting {len(files_to_convert)} pdfs in chunk {args.chunk_idx + 1}/{args.num_chunks} with {total_processes} processes, and storing in {out_folder}")
futures = [
process_single_pdf.options(num_gpus=gpu_frac).remote(
filename,
out_folder,
model_refs,
metadata=metadata.get(os.path.basename(filename)),
min_length=args.min_length
) for filename in files_to_convert
]
# Run all ray conversion tasks
progress_bar = tqdm(total=len(futures))
while len(futures) > 0:
finished, futures = ray.wait(
futures, timeout=7.0
)
finished_lst = ray.get(finished)
if isinstance(finished_lst, list):
progress_bar.update(len(finished_lst))
else:
progress_bar.update(1)
# Shutdown ray to free resources
ray.shutdown()