-
Notifications
You must be signed in to change notification settings - Fork 0
/
mtrand.cpp
198 lines (170 loc) · 5.03 KB
/
mtrand.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
* The Mersenne Twister pseudo-random number generator (PRNG)
*
* This is an implementation of fast PRNG called MT19937,
* meaning it has a period of 2^19937-1, which is a Mersenne
* prime.
*
* This PRNG is fast and suitable for non-cryptographic code.
* For instance, it would be perfect for Monte Carlo simulations,
* etc.
*
* For all the details on this algorithm, see the original paper:
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
*
* Written by Christian Stigen Larsen
* http://csl.sublevel3.org
*
* Distributed under the modified BSD license.
*
* 2012-01-11
*/
#include <stdio.h>
#include <stdint.h>
#include "mtrand.h"
/*
* We have an array of 624 32-bit values, and there are
* 31 unused bits, so we have a seed value of
* 624*32-31 = 19937 bits.
*/
static const unsigned SIZE = 624;
static const unsigned PERIOD = 397;
static const unsigned DIFF = SIZE-PERIOD;
static uint32_t MT[SIZE];
static unsigned index = 0;
#define M32(x) (0x80000000 & x) // 32nd Most Significant Bit
#define L31(x) (0x7FFFFFFF & x) // 31 Least Significant Bits
#define ODD(x) (x & 1) // Check if number is odd
static inline void generate_numbers()
{
/*
* Originally, we had one loop with i going from [0, SIZE) and
* two modulus operations:
*
* for ( register unsigned i=0; i<SIZE; ++i ) {
* register uint32_t y = M32(MT[i]) | L31(MT[(i+1) % SIZE]);
* MT[i] = MT[(i + PERIOD) % SIZE] ^ (y>>1);
* if ( ODD(y) ) MT[i] ^= 0x9908b0df;
* }
*
* For performance reasons, we've unrolled the loop three times, thus
* mitigating the need for any modulus operations.
*
* Anyway, it seems this trick is old hat:
* http://www.quadibloc.com/crypto/co4814.htm
*
*/
static const uint32_t MATRIX[2] = {0, 0x9908b0df};
register uint32_t y, i;
// i = [0 ... 226]
for ( i=0; i<DIFF; ++i ) {
/*
* We're doing 226 = 113*2, an even number of steps, so we can
* safely unroll one more step here for speed:
*/
y = M32(MT[i]) | L31(MT[i+1]);
MT[i] = MT[i+PERIOD] ^ (y>>1) ^ MATRIX[ODD(y)];
++i;
y = M32(MT[i]) | L31(MT[i+1]);
MT[i] = MT[i+PERIOD] ^ (y>>1) ^ MATRIX[ODD(y)];
}
#define UNROLL \
y = M32(MT[i]) | L31(MT[i+1]); \
MT[i] = MT[i-DIFF] ^ (y>>1) ^ MATRIX[ODD(y)]; \
++i;
// i = [227 ... 622]
for ( i=DIFF; i<(SIZE-1); ) {
/*
* 623-227 = 396 = 2*2*3*3*11, so we can unroll this loop in any
* number that evenly divides 396 (2, 4, 6, etc).
*/
// 11 times
UNROLL; UNROLL; UNROLL;
UNROLL; UNROLL; UNROLL;
UNROLL; UNROLL; UNROLL;
UNROLL; UNROLL;
}
// i = [623]
y = M32(MT[SIZE-1]) | L31(MT[SIZE-1]);
MT[SIZE-1] = MT[PERIOD-1] ^ (y>>1) ^ MATRIX[ODD(y)];
}
extern "C" void seed(uint32_t value)
{
/*
* The equation below is a linear congruential generator (LCG),
* one of the oldest known pseudo-random number generator
* algorithms, in the form X_(n+1) = = (a*X_n + c) (mod m).
*
* We've implicitly got m=32 (mask + word size of 32 bits), so
* there is no need to explicitly use modulus.
*
* What is interesting is the multiplier a. The one we have
* below is 0x6c07865 --- 1812433253 in decimal, and is called
* the Borosh-Niederreiter multiplier for modulus 2^32.
*
* It is mentioned in passing in Knuth's THE ART OF COMPUTER
* PROGRAMMING, Volume 2, page 106, Table 1, line 13. LCGs are
* treated in the same book, pp. 10-26
*
* You can read the original paper by Borosh and Niederreiter
* as well. It's called OPTIMAL MULTIPLIERS FOR PSEUDO-RANDOM
* NUMBER GENERATION BY THE LINEAR CONGRUENTIAL METHOD (1983) at
* http://www.springerlink.com/content/n7765ku70w8857l7/
*
* You can read about LCGs at:
* http://en.wikipedia.org/wiki/Linear_congruential_generator
*
* From that page, it says:
* "A common Mersenne twister implementation, interestingly
* enough, uses an LCG to generate seed data.",
*
* Since our we're using 32-bits data types for our MT array,
* we can skip the masking with 0xFFFFFFFF below.
*/
MT[0] = value;
index = 0;
for ( register unsigned i=1; i<SIZE; ++i )
MT[i] = 0x6c078965*(MT[i-1] ^ MT[i-1]>>30) + i;
}
extern "C" uint32_t rand_u32()
{
if ( !index )
generate_numbers();
register uint32_t y = MT[index];
// Tempering
y ^= y>>11;
y ^= y<< 7 & 0x9d2c5680;
y ^= y<<15 & 0xefc60000;
y ^= y>>18;
if ( index++ >= SIZE )
index = 0;
return y;
}
extern "C" float randf_cc()
{
return static_cast<float>(rand_u32())/UINT32_MAX;
}
extern "C" float randf_co()
{
return static_cast<float>(rand_u32())/(UINT32_MAX+1.0f);
}
extern "C" float randf_oo()
{
return (static_cast<float>(rand_u32())+0.5f)/(UINT32_MAX+1.0f);
}
extern "C" double randd_cc()
{
return static_cast<double>(rand_u32())/UINT32_MAX;
}
extern "C" double randd_co()
{
return static_cast<double>(rand_u32())/(UINT32_MAX+1.0);
}
extern "C" double randd_oo()
{
return (static_cast<double>(rand_u32())+0.5)/(UINT32_MAX+1.0);
}
extern "C" uint64_t rand_u64()
{
return static_cast<uint64_t>(rand_u32())<<32 | rand_u32();
}