From 8ceafe535ecd506e5241a0815d1bb61378948a04 Mon Sep 17 00:00:00 2001 From: Chris Nuernberger Date: Mon, 30 Oct 2023 09:32:37 -0600 Subject: [PATCH] Release 7.021 --- CHANGELOG.md | 4 ++++ deps.edn | 4 ++-- docs/000-getting-started.html | 2 +- docs/100-walkthrough.html | 2 +- docs/200-quick-reference.html | 2 +- docs/columns-readers-and-datatypes.html | 2 +- docs/index.html | 4 ++-- docs/nippy-serialization-rocks.html | 2 +- docs/supported-datatypes.html | 2 +- docs/tech.v3.dataset.categorical.html | 2 +- docs/tech.v3.dataset.clipboard.html | 2 +- docs/tech.v3.dataset.column-filters.html | 2 +- docs/tech.v3.dataset.column.html | 2 +- docs/tech.v3.dataset.html | 2 +- docs/tech.v3.dataset.io.csv.html | 2 +- docs/tech.v3.dataset.io.datetime.html | 2 +- docs/tech.v3.dataset.io.string-row-parser.html | 2 +- docs/tech.v3.dataset.io.univocity.html | 2 +- docs/tech.v3.dataset.join.html | 2 +- docs/tech.v3.dataset.math.html | 2 +- docs/tech.v3.dataset.metamorph.html | 2 +- docs/tech.v3.dataset.modelling.html | 2 +- docs/tech.v3.dataset.neanderthal.html | 2 +- docs/tech.v3.dataset.print.html | 2 +- docs/tech.v3.dataset.reductions.apache-data-sketch.html | 2 +- docs/tech.v3.dataset.reductions.html | 2 +- docs/tech.v3.dataset.rolling.html | 2 +- docs/tech.v3.dataset.set.html | 2 +- docs/tech.v3.dataset.tensor.html | 2 +- docs/tech.v3.dataset.zip.html | 2 +- docs/tech.v3.libs.arrow.html | 2 +- docs/tech.v3.libs.fastexcel.html | 2 +- docs/tech.v3.libs.guava.cache.html | 2 +- docs/tech.v3.libs.parquet.html | 2 +- docs/tech.v3.libs.poi.html | 2 +- docs/tech.v3.libs.smile.data.html | 2 +- docs/tech.v3.libs.tribuo.html | 2 +- 37 files changed, 42 insertions(+), 38 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index c91d0987..6e7f1c2d 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,4 +1,8 @@ # Changelog +# 7.021 + * hamf typed-nth operations (dnth, fnth, etc) that are efficient + when input is the analogous primitive array. + # 7.020 * hamf perf upgrades. * big perf upgrade for parsing sequences of maps. diff --git a/deps.edn b/deps.edn index eeb4446e..a87e4bee 100644 --- a/deps.edn +++ b/deps.edn @@ -1,5 +1,5 @@ {:paths ["src" "resources" "target/classes"] - :deps {cnuernber/dtype-next {:mvn/version "10.107"} + :deps {cnuernber/dtype-next {:mvn/version "10.108"} techascent/tech.io {:mvn/version "4.31" :exclusions [org.apache.commons/commons-compress]} org.apache.datasketches/datasketches-java {:mvn/version "4.2.0"}} @@ -12,7 +12,7 @@ :exec-fn codox.main/-main :exec-args {:group-id "techascent" :artifact-id "tech.ml.dataset" - :version "7.020" + :version "7.021" :name "TMD" :description "A Clojure high performance data processing system" :metadata {:doc/format :markdown} diff --git a/docs/000-getting-started.html b/docs/000-getting-started.html index cd978b4d..07eec4ea 100644 --- a/docs/000-getting-started.html +++ b/docs/000-getting-started.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Getting Started

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Getting Started

What kind of data?

TMD processes tabular data, that is, data logically arranged in rows and columns. Similar to a spreadsheet (but handling much larger datasets) or a database (but much more convenient), TMD accelerates exploring, cleaning, and processing data tables. TMD inherits Clojure's data-orientation and flexible dynamic typing, without compromising on being functional; thereby extending the language's reach to new problems and domains.

> (ds/->dataset "lucy.csv")
diff --git a/docs/100-walkthrough.html b/docs/100-walkthrough.html
index 94005d8c..5e83c5ce 100644
--- a/docs/100-walkthrough.html
+++ b/docs/100-walkthrough.html
@@ -4,7 +4,7 @@
   function gtag(){dataLayer.push(arguments);}
   gtag('js', new Date());
 
-  gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Walkthrough

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Walkthrough

tech.ml.dataset (TMD) is a Clojure library designed to ease working with tabular data, similar to data.table in R or Python's Pandas. TMD takes inspiration from the design of those tools, but does not aim to copy their functionality. Instead, TMD is a building block that increases Clojure's already considerable data processing power.

High Level Design

In TMD, a dataset is logically a map of column name to column data. Column data is typed (e.g., a column of 16 bit integers, or a column of 64 bit floating point numbers), similar to a database. Column names may be any Java object - keywords and strings are typical - and column values may be any Java primitive type, or type supported by tech.datatype, datetimes, or arbitrary objects. Column data is stored contiguously in JVM arrays, and missing values are indicated with bitsets.

diff --git a/docs/200-quick-reference.html b/docs/200-quick-reference.html index 41756938..9307a401 100644 --- a/docs/200-quick-reference.html +++ b/docs/200-quick-reference.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Quick Reference

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Quick Reference

This topic summarizes many of the most frequently used TMD functions, together with some quick notes about their use. Functions here are linked to further documentation, or their source. Note, unless a namespace is specified, each function is accessible via the tech.ml.dataset namespace.

For a more thorough treatment, the API docs list every available function.

Table of Contents

diff --git a/docs/columns-readers-and-datatypes.html b/docs/columns-readers-and-datatypes.html index 2e72832b..add8cb09 100644 --- a/docs/columns-readers-and-datatypes.html +++ b/docs/columns-readers-and-datatypes.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Columns, Readers, and Datatypes

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Columns, Readers, and Datatypes

In tech.ml.dataset, columns are composed of three things: data, metadata, and the missing set. The column's datatype is the datatype of the data member. The data member can diff --git a/docs/index.html b/docs/index.html index 6a7998cd..b9554eae 100644 --- a/docs/index.html +++ b/docs/index.html @@ -1,10 +1,10 @@ -TMD 7.020

TMD 7.020

A Clojure high performance data processing system.

Topics

Namespaces

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating + gtag('config', 'G-95TVFC1FEB');

TMD 7.021

A Clojure high performance data processing system.

Topics

Namespaces

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions are supported, a straight value->integer map and one-hot encoding.

diff --git a/docs/nippy-serialization-rocks.html b/docs/nippy-serialization-rocks.html index dd7a198b..67a354b3 100644 --- a/docs/nippy-serialization-rocks.html +++ b/docs/nippy-serialization-rocks.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset And nippy

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset And nippy

We are big fans of the nippy system for freezing/thawing data. So we were pleasantly surprized with how well it performs with dataset and how easy it was to extend the dataset object to support nippy diff --git a/docs/supported-datatypes.html b/docs/supported-datatypes.html index fb607ca5..0c9e1c53 100644 --- a/docs/supported-datatypes.html +++ b/docs/supported-datatypes.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Supported Datatypes

+ gtag('config', 'G-95TVFC1FEB');

tech.ml.dataset Supported Datatypes

tech.ml.dataset supports a wide range of datatypes and has a system for expanding the supported datatype set, aliasing new names to existing datatypes, and packing object datatypes into primitive containers. Let's walk through each of these topics diff --git a/docs/tech.v3.dataset.categorical.html b/docs/tech.v3.dataset.categorical.html index 98949683..706f227b 100644 --- a/docs/tech.v3.dataset.categorical.html +++ b/docs/tech.v3.dataset.categorical.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.categorical

Conversions of categorical values into numbers and back. Two forms of conversions are supported, a straight value->integer map and one-hot encoding.

The functions in this namespace manipulate the metadata on the columns of the dataset, wich can be inspected via clojure.core/meta

fit-categorical-map

(fit-categorical-map dataset colname & [table-args res-dtype])

Given a column, map it into an numeric space via a discrete map of values diff --git a/docs/tech.v3.dataset.clipboard.html b/docs/tech.v3.dataset.clipboard.html index bb376e4a..59831c55 100644 --- a/docs/tech.v3.dataset.clipboard.html +++ b/docs/tech.v3.dataset.clipboard.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.clipboard

Optional namespace that copies a dataset to the clipboard for pasting into + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.clipboard

Optional namespace that copies a dataset to the clipboard for pasting into applications such as excel or google sheets.

Reading defaults to 'csv' format while writing defaults to 'tsv' format.

clipboard

(clipboard)

Get the system clipboard.

diff --git a/docs/tech.v3.dataset.column-filters.html b/docs/tech.v3.dataset.column-filters.html index 1666260d..15d85bf5 100644 --- a/docs/tech.v3.dataset.column-filters.html +++ b/docs/tech.v3.dataset.column-filters.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column-filters

Queries to select column subsets that have various properites such as all numeric + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column-filters

Queries to select column subsets that have various properites such as all numeric columns, all feature columns, or columns that have a specific datatype.

Further a few set operations (union, intersection, difference) are provided to further manipulate subsets of columns.

diff --git a/docs/tech.v3.dataset.column.html b/docs/tech.v3.dataset.column.html index 555e13b0..957238b8 100644 --- a/docs/tech.v3.dataset.column.html +++ b/docs/tech.v3.dataset.column.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column

clone

(clone col)

Clone this column not changing anything.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.column

clone

(clone col)

Clone this column not changing anything.

column-map

(column-map map-fn res-dtype & args)

Map a scalar function across one or more columns. This is the semi-missing-set aware version of tech.v3.datatype/emap. This function is never lazy.

diff --git a/docs/tech.v3.dataset.html b/docs/tech.v3.dataset.html index 5a803609..50296299 100644 --- a/docs/tech.v3.dataset.html +++ b/docs/tech.v3.dataset.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset

Column major dataset abstraction for efficiently manipulating in memory datasets.

->>dataset

(->>dataset options dataset)(->>dataset dataset)

Please see documentation of ->dataset. Options are the same.

->dataset

(->dataset dataset options)(->dataset dataset)

Create a dataset from either csv/tsv or a sequence of maps.

diff --git a/docs/tech.v3.dataset.io.csv.html b/docs/tech.v3.dataset.io.csv.html index 2e2587be..6663af89 100644 --- a/docs/tech.v3.dataset.io.csv.html +++ b/docs/tech.v3.dataset.io.csv.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.csv

CSV parsing based on charred.api/read-csv.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.csv

CSV parsing based on charred.api/read-csv.

csv->dataset

(csv->dataset input & [options])

Read a csv into a dataset. Same options as tech.v3.dataset/->dataset.

csv->dataset-seq

(csv->dataset-seq input & [options])

Read a csv into a lazy sequence of datasets. All options of tech.v3.dataset/->dataset are suppored aside from :n-initial-skip-rows with an additional option of diff --git a/docs/tech.v3.dataset.io.datetime.html b/docs/tech.v3.dataset.io.datetime.html index b692cbb8..5bfe2fb7 100644 --- a/docs/tech.v3.dataset.io.datetime.html +++ b/docs/tech.v3.dataset.io.datetime.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.datetime

Helpful and well tested string->datetime pathways.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.datetime

Helpful and well tested string->datetime pathways.

datatype->general-parse-fn-map

Map of datetime datatype to generalized parse fn.

datetime-formatter-or-str->parser-fn

(datetime-formatter-or-str->parser-fn datatype format-string-or-formatter)

Given a datatype and one of fn? string? DateTimeFormatter, return a function that takes strings and returns datetime objects diff --git a/docs/tech.v3.dataset.io.string-row-parser.html b/docs/tech.v3.dataset.io.string-row-parser.html index 9670b08a..08223d54 100644 --- a/docs/tech.v3.dataset.io.string-row-parser.html +++ b/docs/tech.v3.dataset.io.string-row-parser.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.string-row-parser

Parsing functions based on raw data that is represented by a sequence + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.string-row-parser

Parsing functions based on raw data that is represented by a sequence of string arrays.

partition-all-rows

(partition-all-rows {:keys [header-row?], :or {header-row? true}} n row-seq)

Given a sequence of rows, partition into an undefined number of partitions of at most N rows but keep the header row as the first for all sequences.

diff --git a/docs/tech.v3.dataset.io.univocity.html b/docs/tech.v3.dataset.io.univocity.html index ed059690..87b5f6ac 100644 --- a/docs/tech.v3.dataset.io.univocity.html +++ b/docs/tech.v3.dataset.io.univocity.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.univocity

Bindings to univocity. Transforms csv's, tsv's into sequences + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.io.univocity

Bindings to univocity. Transforms csv's, tsv's into sequences of string arrays that are then passed into tech.v3.dataset.io.string-row-parser methods.

create-csv-parser

(create-csv-parser {:keys [header-row? num-rows column-whitelist column-blacklist column-allowlist column-blocklist separator n-initial-skip-rows], :or {header-row? true}, :as options})

Create an implementation of univocity csv parser.

diff --git a/docs/tech.v3.dataset.join.html b/docs/tech.v3.dataset.join.html index cc6496ec..d4705648 100644 --- a/docs/tech.v3.dataset.join.html +++ b/docs/tech.v3.dataset.join.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.join

implementation of join algorithms, both exact (hash-join) and near.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.join

implementation of join algorithms, both exact (hash-join) and near.

hash-join

(hash-join colname lhs rhs)(hash-join colname lhs rhs {:keys [operation-space], :or {operation-space :int32}, :as options})

Join by column. For efficiency, lhs should be smaller than rhs. colname - may be a single item or a tuple in which is destructures as: (let lhs-colname rhs-colname colname] ...) diff --git a/docs/tech.v3.dataset.math.html b/docs/tech.v3.dataset.math.html index 120e8641..310c4b2e 100644 --- a/docs/tech.v3.dataset.math.html +++ b/docs/tech.v3.dataset.math.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.math

Various mathematic transformations of datasets such as (inefficiently) + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.math

Various mathematic transformations of datasets such as (inefficiently) building simple tables, pca, and normalizing columns to have mean of 0 and variance of 1. More in-depth transformations are found at tech.v3.dataset.neanderthal.

correlation-table

(correlation-table dataset & {:keys [correlation-type colname-seq]})

Return a map of colname->list of sorted tuple of colname, coefficient. diff --git a/docs/tech.v3.dataset.metamorph.html b/docs/tech.v3.dataset.metamorph.html index 645f0ec7..3fd4f260 100644 --- a/docs/tech.v3.dataset.metamorph.html +++ b/docs/tech.v3.dataset.metamorph.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.metamorph

This is an auto-generated api system - it scans the namespaces and changes the first + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.metamorph

This is an auto-generated api system - it scans the namespaces and changes the first to be metamorph-compliant which means transforming an argument that is just a dataset into an argument that is a metamorph context - a map of {:metamorph/data ds}. They also return their result as a metamorph context.

diff --git a/docs/tech.v3.dataset.modelling.html b/docs/tech.v3.dataset.modelling.html index 0d89044e..08e3525d 100644 --- a/docs/tech.v3.dataset.modelling.html +++ b/docs/tech.v3.dataset.modelling.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.modelling

Methods related specifically to machine learning such as setting the inference + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.modelling

Methods related specifically to machine learning such as setting the inference target. This file integrates tightly with tech.v3.dataset.categorical which provides categorical -> number and one-hot transformation pathways.

The functions in this namespace manipulate the metadata on the columns of the dataset, wich can be inspected via clojure.core/meta

diff --git a/docs/tech.v3.dataset.neanderthal.html b/docs/tech.v3.dataset.neanderthal.html index a7a67c81..25310958 100644 --- a/docs/tech.v3.dataset.neanderthal.html +++ b/docs/tech.v3.dataset.neanderthal.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.neanderthal

Conversion of a dataset to/from a neanderthal dense matrix as well as various + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.neanderthal

Conversion of a dataset to/from a neanderthal dense matrix as well as various dataset transformations such as pca, covariance and correlation matrixes.

Please include these additional dependencies in your project:

  [uncomplicate/neanderthal "0.45.0"]
diff --git a/docs/tech.v3.dataset.print.html b/docs/tech.v3.dataset.print.html
index 43d6a6f0..1adf9e3d 100644
--- a/docs/tech.v3.dataset.print.html
+++ b/docs/tech.v3.dataset.print.html
@@ -4,7 +4,7 @@
   function gtag(){dataLayer.push(arguments);}
   gtag('js', new Date());
 
-  gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.print

dataset->str

(dataset->str ds options)(dataset->str ds)

Convert a dataset to a string. Prints a single line header and then calls + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.print

dataset->str

(dataset->str ds options)(dataset->str ds)

Convert a dataset to a string. Prints a single line header and then calls dataset-data->str.

For options documentation see dataset-data->str.

dataset-data->str

(dataset-data->str dataset)(dataset-data->str dataset options)

Convert the dataset values to a string.

diff --git a/docs/tech.v3.dataset.reductions.apache-data-sketch.html b/docs/tech.v3.dataset.reductions.apache-data-sketch.html index 07144608..e58f4b01 100644 --- a/docs/tech.v3.dataset.reductions.apache-data-sketch.html +++ b/docs/tech.v3.dataset.reductions.apache-data-sketch.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions.apache-data-sketch

Reduction reducers based on the apache data sketch family of algorithms.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions.apache-data-sketch

Reduction reducers based on the apache data sketch family of algorithms.

diff --git a/docs/tech.v3.dataset.reductions.html b/docs/tech.v3.dataset.reductions.html index 131fc950..b59ad6cf 100644 --- a/docs/tech.v3.dataset.reductions.html +++ b/docs/tech.v3.dataset.reductions.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions

Specific high performance reductions intended to be performend over a sequence + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.reductions

Specific high performance reductions intended to be performend over a sequence of datasets. This allows aggregations to be done in situations where the dataset is larger than what will fit in memory on a normal machine. Due to this fact, summation is implemented using Kahan algorithm and various statistical methods are done in using diff --git a/docs/tech.v3.dataset.rolling.html b/docs/tech.v3.dataset.rolling.html index 1220dcc9..6e2ced79 100644 --- a/docs/tech.v3.dataset.rolling.html +++ b/docs/tech.v3.dataset.rolling.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.rolling

Implement a generalized rolling window including support for time-based variable + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.rolling

Implement a generalized rolling window including support for time-based variable width windows.

expanding

(expanding ds reducer-map)

Run a set of reducers across a dataset with an expanding set of windows. These will produce a cumsum-type operation.

diff --git a/docs/tech.v3.dataset.set.html b/docs/tech.v3.dataset.set.html index 75bac93d..c1c25159 100644 --- a/docs/tech.v3.dataset.set.html +++ b/docs/tech.v3.dataset.set.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.set

Extensions to datasets to do per-row bag-semantics set/union and intersection.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.set

Extensions to datasets to do per-row bag-semantics set/union and intersection.

difference

(difference a)(difference a b)

Remove tuples from a that also appear in b.

intersection

(intersection a)(intersection a b)(intersection a b & args)

Intersect two datasets producing a new dataset with the union of tuples. Tuples repeated across all datasets repeated in final dataset at their minimum diff --git a/docs/tech.v3.dataset.tensor.html b/docs/tech.v3.dataset.tensor.html index 9d8dc583..0b50636f 100644 --- a/docs/tech.v3.dataset.tensor.html +++ b/docs/tech.v3.dataset.tensor.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.tensor

Conversion mechanisms from dataset to tensor and back.

+ gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.tensor

Conversion mechanisms from dataset to tensor and back.

dataset->tensor

(dataset->tensor dataset datatype)(dataset->tensor dataset)

Convert a dataset to a tensor. Columns of the dataset will be converted to columns of the tensor. Default datatype is :float64.

mean-center-columns!

(mean-center-columns! tens {:keys [nan-strategy means], :or {nan-strategy :remove}})(mean-center-columns! tens)

in-place nan-aware mean-center the rows of the tensor. If tensor is writeable then this diff --git a/docs/tech.v3.dataset.zip.html b/docs/tech.v3.dataset.zip.html index aaff4c2d..eb09eb37 100644 --- a/docs/tech.v3.dataset.zip.html +++ b/docs/tech.v3.dataset.zip.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.zip

Load zip data. Zip files with a single file entry can be loaded with ->dataset. When + gtag('config', 'G-95TVFC1FEB');

tech.v3.dataset.zip

Load zip data. Zip files with a single file entry can be loaded with ->dataset. When a zip file has multiple entries you have to call zipfile->dataset-seq.

dataset-seq->zipfile!

(dataset-seq->zipfile! output options ds-seq)(dataset-seq->zipfile! output ds-seq)

Write a sequence of datasets to zipfiles. You can control the inner type with the :file-type option which defaults to .tsv

diff --git a/docs/tech.v3.libs.arrow.html b/docs/tech.v3.libs.arrow.html index abf1ac48..9981ad92 100644 --- a/docs/tech.v3.libs.arrow.html +++ b/docs/tech.v3.libs.arrow.html @@ -4,7 +4,7 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); - gtag('config', 'G-95TVFC1FEB');

tech.v3.libs.arrow

Support for reading/writing apache arrow datasets. Datasets may be memory mapped + gtag('config', 'G-95TVFC1FEB');

tech.v3.libs.arrow

Support for reading/writing apache arrow datasets. Datasets may be memory mapped but default to being read via an input stream.

Supported datatypes: