tech.datatype
contains support for loading/saving buffered images
and creating tensors from buffered images.
Buffered images implement the protocols required to be part of the datatype system.
user> (require '[tech.v2.datatype :as dtype])
nil
user> (require '[tech.libs.buffered-image :as bufimg])
nil
user> (def test-img (bufimg/load "../tech.opencv/test/data/test.jpg"))
#'user/test-img
user> test-img
#object[java.awt.image.BufferedImage 0x71374470 "BufferedImage@71374470: type = 5 ColorModel: #pixelBits = 24 numComponents = 3 color space = java.awt.color.ICC_ColorSpace@27f821b6 transparency = 1 has alpha = false isAlphaPre = false ByteInterleavedRaster: width = 512 height = 288 #numDataElements 3 dataOff[0] = 2"]
user> (dtype/get-datatype test-img)
:uint8
user> (dtype/shape test-img)
[288 512 3]
user> (bufimg/image-channel-format test-img)
:bgr
user> (require '[tech.v2.tensor :as dtt])
nil
;;It is safe to print tensors to repl. They will elide data in a similar fashion
;;as numpy arrays.
user> (dtt/ensure-tensor test-img)
#tech.v2.tensor<uint8>[288 512 3]
[[[172 170 170]
[172 170 170]
[171 169 169]
...
[ 24 18 23]
[ 24 18 23]
[ 24 18 23]]
...
;;You can get a fully-typed reader from a tensor to read indiviudal bytes:
user> (def test-rdr (tens-typecast/datatype->tensor-reader :uint8 (dtt/ensure-tensor test-img)))
#'user/test-rdr
user> (.read3d test-rdr 0 0 1)
170
user> (.read3d test-rdr 0 0 2)
170
user> (.read3d test-rdr 0 0 3)
172
- One important thing to note is the return value of ensure-tensor shares the backing data store with the source object. So you can write to the tensor with any of the datatype methods and the result will be written into the buffered image.
;;If you have images of other base storage types you may get a different tensor than
;;you want:
user> (vec(keys bufimg/image-types))
[:int-bgr
:byte-gray
:byte-binary
:ushort-gray
:ushort-555-rgb
:int-argb-pre
:byte-indexed
:custom
:byte-bgr
:byte-abgr-pre
:int-rgb
:ushort-565-rgb
:byte-abgr
:int-argb]
user> (def test-img (bufimg/new-image 4 4 :int-bgr))
#'user/test-img
user> (dtt/ensure-tensor test-img)
#tech.v2.tensor<int32>[4 4 1]
[[[0]
[0]
[0]
[0]]
[[0]
[0]
[0]
[0]]
[[0]
[0]
[0]
[0]]
[[0]
[0]
[0]
[0]]]
;;So we have a convenience method that will always return a uint8 tensor:
user> (bufimg/as-ubyte-tensor test-img)
#tech.v2.tensor<uint8>[4 4 3]
[[[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]
[[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]
[[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]
[[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]]
;;You can use this as you can any other tensor. See the cheatsheet.
(def img-writer (tens-typecast/datatype->tensor-writer
:uint8
(bufimg/as-ubyte-tensor test-img)))
#'user/img-writer
user> (.write3d img-writer 2 2 1 255)
nil
user> (dtype/->reader test-img)
[0 0 0 0 0 0 0 0 0 0 65280 0 0 0 0 0]
user> (bufimg/as-ubyte-tensor test-img)
#tech.v2.tensor<uint8>[4 4 3]
[[[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]
[[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]
[[0 0 0]
[0 0 0]
[0 255 0]
[0 0 0]]
[[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]]
All the tensor operations return data in-place. So in the transpose call below a view is returned without actually doing any copies. Iterating over tensors iterates over the outermost dimension returning a sequence of tensors or a sequence of numbers if this is a one dimension tensor.
Our image is in BGR-interleaved format, so what we first do is transpose the image into BGR planar format. We then use the statistical methods in datatype in order to get the per-channel statistics for the image.
;;Having images be tensors is useful for a few things, but stats is one of them.
user> (def planar-tens (dtt/transpose test-tens [2 0 1]))
#'user/planar-tens
user> planar-tens
#tech.v2.tensor<uint8>[3 288 512]
[[[172 172 171 ... 24 24 24]
[173 174 173 ... 23 23 23]
[174 175 174 ... 23 22 22]
...
[ 37 37 37 ... 55 54 55]
[ 36 35 35 ... 52 50 53]
[ 39 37 34 ... 51 49 53]]
[[170 170 169 ... 18 18 18]
[171 172 171 ... 17 17 17]
[172 173 172 ... 17 16 16]
...
[ 46 46 46 ... 51 50 51]
[ 45 44 44 ... 51 49 52]
[ 48 46 43 ... 50 48 52]]
[[170 170 169 ... 23 23 23]
[171 172 171 ... 22 22 22]
[172 173 172 ... 22 21 21]
...
[ 84 84 83 ... 56 55 56]
[ 83 82 81 ... 55 53 56]
[ 86 84 80 ... 54 52 56]]]
user> (require '[tech.v2.datatype.functional :as dfn])
nil
user> (map dfn/descriptive-stats planar-tens)
({:min 0.0,
:mean 97.47846137154495,
:ecount 147456,
:standard-deviation 60.735870710272195,
:median 97.0,
:max 248.0}
{:min 5.0,
:mean 101.00441487631271,
:ecount 147456,
:standard-deviation 58.55138215866227,
:median 102.0,
:max 255.0}
{:min 5.0,
:mean 113.43905978729688,
:ecount 147456,
:standard-deviation 57.79730239195752,
:median 115.0,
:max 255.0})
For simple resize operations, we provide a resize convenience function that uses the buffered image graphics canvas to render a resized image into another image.
Cropping can be done 2 ways. The draw-image! method can crop or you can select regions of the images using the tensor api and then us the datatype copy! operation.
;;Drawing images work well in order to copy parts of one:
(def new-img (bufimg/new-image 512 512 :int-argb))
#'user/new-img
user> (bufimg/draw-image! test-img new-img :dst-y-offset 128)
#object[java.awt.image.BufferedImage 0x1ec0f94c "BufferedImage@1ec0f94c: type = 2 DirectColorModel: rmask=ff0000 gmask=ff00 bmask=ff amask=ff000000 IntegerInterleavedRaster: width = 512 height = 512 #Bands = 4 xOff = 0 yOff = 0 dataOffset[0] 0"]
;;But so does selecting subrects of tensors
user> (def copy-tens (dtt/select (bufimg/as-ubyte-tensor new-img)
(range 128 (+ 288 128)) :all [0 1 2]))
#'user/copy-tens
user> copy-tens
#tech.v2.tensor<uint8>[288 512 3]
[[[172 170 170]
[172 170 170]
[171 169 169]
...
[ 24 18 23]
[ 24 18 23]
[ 24 18 23]]
user> (dtype/copy! test-img copy-tens)
#tech.v2.tensor<uint8>[288 512 3]
[[[172 170 170]
[172 170 170]
[171 169 169]
...
[ 24 18 23]
[ 24 18 23]
[ 24 18 23]]
...
load
- load an image. clojure.java.io/input-stream is called on the fname.new-image
- Create a new image. Arguments are in row-major format: height,width,img-type.image-type
- Returns the image type of the image.image-channel-map
- Returns a map of the channel names to indexes when the image is interpreted as a uint8 tensor.as-ubyte-tensor
- interpret image as a uint8 tensor. Works for byte and int image types.draw-image!
- Draw a source image onto a dest image. You can specify the source/dest rectangles and an interpolation method when resizing.downsample-bilinear
- Convenience method arounddraw-image
. Default is to halve the height and width of the image.resize
- Convenience method that auto-determines the interpolation type based on source/dest width ratio.clone
- Clone an image. Simply callstech.v2.datatype/clone
.save!
- save the image. You can specify a format optionally aside from the fname or it will be inferred from the part of the fname following the last '.'.
It is important to note that all of the datatype methods work on the image - ecount
,
shape
, get-datatype
, copy!
, set-constant!
. All of the tensor methods work on
the image - ensure-tensor
, select
, reshape
, transpose
. You can create a
tensor reader or writer from the image to get fully typed access to it in
height,width,channel as demonstrated above. Finally there is a new container type,
:buffered-image
, so you can use the tech.v2.datatype/make-container
with
container-type :buffered-image
a datatype (which can only be `:uint8) and a shape
to create a new image:
tech.libs.buffered-image-test> (dtype/make-container :buffered-image :uint8 [4 4 4])
#object[java.awt.image.BufferedImage 0x67005e49 "BufferedImage@67005e49: type = 6 ColorModel: #pixelBits = 32 numComponents = 4 color space = java.awt.color.ICC_ColorSpace@302cd36f transparency = 3 has alpha = true isAlphaPre = false ByteInterleavedRaster: width = 4 height = 4 #numDataElements 4 dataOff[0] = 3"]