-
-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathpatterns.go
184 lines (167 loc) · 5.6 KB
/
patterns.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
package canvas
import (
"image/color"
"math"
)
type Pattern interface {
SetView(Matrix) Pattern
SetColorSpace(ColorSpace) Pattern
ClipTo(Renderer, *Path)
}
//type CanvasPattern struct {
// c *Canvas
// cell Matrix
//}
//
//func NewPattern(c *Canvas, cell Matrix) *CanvasPattern {
// return &CanvasPattern{
// c: c,
// cell: cell,
// }
//}
//
//func (p *CanvasPattern) ClipTo(r Renderer, clip *Path) {
// //fmt.Println("src", p.c.Size())
// //fmt.Println("dst", r.Size())
// //fmt.Println("matrix", p.m)
// // TODO: tile
// p.c.RenderViewTo(r, p.cell)
//}
//type ImagePattern struct {
// img *image.RGBA
// cell Matrix
//}
//
//func NewImagePattern() *ImagePattern {
// return &ImagePattern{}
//}
//
//func (p *ImagePattern) ClipTo(r Renderer, clip *Path) {
//}
// Hatch pattern is a filling hatch pattern.
type HatchPattern struct {
Fill Paint
Thickness float64
cell Matrix
hatch Hatcher
}
// Hatcher is a hatch pattern along the cell's axes. The rectangle (x0,y0)-(x1,y1) is expressed in the unit cell's coordinate system, and the returned path should be transformed by the cell to obtain the final hatch pattern.
type Hatcher func(float64, float64, float64, float64) *Path
// NewHatchPattern returns a new hatch pattern.
func NewHatchPattern(ifill interface{}, thickness float64, cell Matrix, hatch Hatcher) *HatchPattern {
var fill Paint
if paint, ok := ifill.(Paint); ok {
fill = paint
} else if pattern, ok := ifill.(Pattern); ok {
fill = Paint{Pattern: pattern}
} else if gradient, ok := ifill.(Gradient); ok {
fill = Paint{Gradient: gradient}
} else if col, ok := ifill.(color.Color); ok {
fill = Paint{Color: rgbaColor(col)}
}
if fill.IsPattern() {
panic("hatch paint cannot be pattern")
}
return &HatchPattern{
Fill: fill,
Thickness: thickness,
cell: cell,
hatch: hatch,
}
}
// SetView sets the view. Automatically called by Canvas for coordinate system transformations.
func (p *HatchPattern) SetView(view Matrix) Pattern {
return p
}
// SetColorSpace sets the color space. Automatically called by the rasterizer.
func (p *HatchPattern) SetColorSpace(colorSpace ColorSpace) Pattern {
if _, ok := colorSpace.(LinearColorSpace); ok {
return p
}
if p.Fill.IsGradient() {
p.Fill.Gradient.SetColorSpace(colorSpace)
} else if p.Fill.IsColor() {
p.Fill.Color = colorSpace.ToLinear(p.Fill.Color)
}
return p
}
// Tile tiles the hatch pattern within the clipping path.
func (p *HatchPattern) Tile(clip *Path) *Path {
dst := clip.FastBounds()
// find extremes along cell axes
invCell := p.cell.Inv()
points := []Point{
invCell.Dot(Point{dst.X0 - p.Thickness, dst.Y0 - p.Thickness}),
invCell.Dot(Point{dst.X1 + p.Thickness, dst.Y0 - p.Thickness}),
invCell.Dot(Point{dst.X1 + p.Thickness, dst.Y1 + p.Thickness}),
invCell.Dot(Point{dst.X0 - p.Thickness, dst.Y1 + p.Thickness}),
}
x0, x1 := points[0].X, points[0].X
y0, y1 := points[0].Y, points[0].Y
for _, point := range points[1:] {
x0 = math.Min(x0, point.X)
x1 = math.Max(x1, point.X)
y0 = math.Min(y0, point.Y)
y1 = math.Max(y1, point.Y)
}
hatch := p.hatch(x0, y0, x1, y1)
hatch = hatch.Transform(p.cell)
hatch = hatch.And(clip)
if p.Thickness != 0.0 {
hatch = hatch.Stroke(p.Thickness, ButtCap, MiterJoin, 0.01)
}
return hatch
}
// ClipTo tiles the hatch pattern to the clipping path and renders it to the renderer.
func (p *HatchPattern) ClipTo(r Renderer, clip *Path) {
hatch := p.Tile(clip)
r.RenderPath(hatch, Style{Fill: p.Fill}, Identity)
}
// NewLineHatch returns a new line hatch pattern with lines at an angle with a spacing of distance. Thickness is the stroke thickness applied to the shape; stroking is ignored with thickness is zero.
func NewLineHatch(ifill interface{}, angle, distance, thickness float64) *HatchPattern {
cell := Identity.Rotate(angle).Scale(distance, distance)
return NewHatchPattern(ifill, thickness, cell, func(x0, y0, x1, y1 float64) *Path {
p := &Path{}
for y := math.Floor(y0); y <= y1; y += 1.0 {
p.MoveTo(x0, y)
p.LineTo(x1, y)
}
return p
})
}
// NewCrossHatch returns a new cross hatch pattern of two regular line hatches at different angles and with different distance intervals. Thickness is the stroke thickness applied to the shape; stroking is ignored with thickness is zero.
func NewCrossHatch(ifill interface{}, angle0, angle1, distance0, distance1, thickness float64) *HatchPattern {
cell := PrimitiveCell(
Point{distance0, 0.0}.Rot(angle0*math.Pi/180.0, Origin),
Point{distance1, 0.0}.Rot(angle1*math.Pi/180.0, Origin),
)
return NewHatchPattern(ifill, thickness, cell, func(x0, y0, x1, y1 float64) *Path {
p := &Path{}
for y := math.Floor(y0); y <= y1; y += 1.0 {
p.MoveTo(x0, y)
p.LineTo(x1, y)
}
for x := math.Floor(x0); x <= x1; x += 1.0 {
p.MoveTo(x, y0)
p.LineTo(x, y1)
}
return p
})
}
// NewShapeHatch returns a new shape hatch that repeats the given shape over a rhombus primitive cell with sides of length distance. Thickness is the stroke thickness applied to the shape; stroking is ignored with thickness is zero.
func NewShapeHatch(ifill interface{}, shape *Path, distance, thickness float64) *HatchPattern {
d := distance * math.Sin(60.0*math.Pi/180.0)
cell := SquareCell(1.0)
return NewHatchPattern(ifill, thickness, cell, func(x0, y0, x1, y1 float64) *Path {
p := &Path{}
for y := math.Floor(y0/distance) * distance; y <= y1; y += 2.0 * d {
for x := math.Floor(x0/distance) * distance; x <= x1; x += distance {
p = p.Append(shape.Copy().Translate(x, y))
}
for x := (math.Floor(x0/distance) + 0.5) * distance; x <= x1; x += distance {
p = p.Append(shape.Copy().Translate(x, y+d))
}
}
return p
})
}