-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerateGraph.ts
671 lines (581 loc) · 30.7 KB
/
generateGraph.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
namespace microcode {
/** The colours that will be used for the lines & sensor information boxes */
const SENSOR_COLORS: number[] = [2,3,4,6,7,9]
/** How many times should a line be duplicated when drawn? */
const PLOT_SMOOTHING_CONSTANT: number = 4
/** At what point should the UI behaviour change to graph view vs sensor selection? */
const Y_SCROLL_GRAPH_MODE_CUT_OFF: number = -60
/**
* Indice access alias into datalogger's columns.
*/
enum SENSOR_COLUMNS {
NAME = 0,
TIME = 1,
READING = 2,
EVENT = 3
}
/**
* Indice access alias into this.sensorMinsAndMaxs columns.
*/
enum MIN_MAX_COLUMNS {
MIN = 0,
MAX = 1
}
/**
* Used by this.rawCoordinates; interface for type optimisation.
* Used since readings need to be sorted by their sensor, but the values from the datalogger may be in an unpredictable order,
* Thus indexing by the sensorName - which is at the start of each row simplifies access.
*/
interface ISensorReadingLookup {
[sensorName: string]: number[];
}
/**
* Is the graph or the sensors being shown?
*/
enum UI_STATE {
/** Graph is being shown */
GRAPH,
/** The sensors are being shown */
SENSOR_SELECTION
}
/** y-axis scroll change when the graph is shown */
const GRAPH_Y_AXIS_SCROLL_RATE: number = 20
/**
* Takes the datalogger logs and generates a labelled graph.
* Each sensor is a unique coloured line, sensor information is detailed below.
*/
export class GraphGenerator extends Scene {
private windowWidth: number;
private windowHeight: number;
private windowLeftBuffer: number;
private windowRightBuffer: number;
private windowTopBuffer: number;
private windowBotBuffer: number;
/** Progressed via UP & DOWN. Causes the UI to scroll - UI elements are scaled appropriately via recalculation of normalisedCoordinate Y-values. */
private yScrollOffset: number;
/** Progressed via LEFT & RIGHT. Causes the next chunk of data to be loaded into rawCoordinates & normalisedCoordinates to update. */
private xScrollOffset: number;
/** UI interaction behaviour changes if this.yScrollOffset descends past Y_SCROLL_GRAPH_MODE_CUT_OFF */
private uiState: UI_STATE;
/** Reconstructed from the datalogger: needed for accessing minimum and maximum readings for normalisation & y-axis. */
private sensors: Sensor[]
/** Each row is one sensor, the columns within the row are the raw readings from the tabular data viewer. */
private rawCoordinates: ISensorReadingLookup
/** Normalise rawCoordinates for the current screen size: invoked upon UP, DOWN, LEFT, RIGHT */
private processedCoordinates: number[][];
/** Sensors can be turned on & off when this.ui_state is SENSOR_SELECTION, by boxes below the graph. Only showSensors[n] == true are shown */
private drawSensorStates: {[sensorName: string]: boolean};
/** Indices of sensors that should have their first reading shown on the y-axis */
private sensorsIndicesForYAxis: number[]
/** Index into the datalogger that reads should begin at, indexed by this.xScrollOffset */
private startReadingAt: number[];
/** Lower bound for range that x-values are normalised to. Also displayed in bot left of the x-axis */
private lowestPeriod: number
/** Upper bound for range that x-values are normalised to. Also displayed in bot right of the x-axis */
private greatestPeriod: number
/** Use the sensor minimum and maximum data to wwrite information about them below the plot */
private sensorMinsAndMaxs: number[][];
/** After scrolling past the plot the user can select a sensor to disable/enable */
private currentlySelectedSensorIndex: number;
/** Lowest of sensor.minimum for all sensors: required to write at the bottom of the y-axis */
private globalSensorMinimum: number;
/** Greatest of sensor.maximum for all sensors: required to write at the top of the y-axis */
private globalSensorMaximum: number;
constructor(app: App) {
super(app, "graphGeneration")
this.backgroundColor = 3
this.windowWidth = Screen.WIDTH
this.windowHeight = Screen.HEIGHT
this.uiState = UI_STATE.GRAPH
this.windowLeftBuffer = 38
this.windowRightBuffer = 10
this.windowTopBuffer = 5
this.windowBotBuffer = 20
this.yScrollOffset = 0
this.xScrollOffset = 0
this.findSensors()
this.drawSensorStates = {}
this.sensorMinsAndMaxs = []
this.startReadingAt = [0]
this.sensors.forEach((sensor) => {
this.drawSensorStates[sensor.getName()] = true
this.sensorMinsAndMaxs.push([sensor.getMinimum(), sensor.getMaximum()])
})
// Unbind all controls - since .processReadings() may take some time if there are an immense amount of readings:
// Pressing a button during this early stage of processing may crash:
control.onEvent(ControllerButtonEvent.Pressed, controller.up.id, () => {});
control.onEvent(ControllerButtonEvent.Pressed,controller.down.id,() => {});
control.onEvent(ControllerButtonEvent.Pressed,controller.left.id,() => {});
control.onEvent(ControllerButtonEvent.Pressed,controller.right.id,() => {});
control.onEvent(ControllerButtonEvent.Pressed,controller.A.id,() => {});
control.onEvent(ControllerButtonEvent.Pressed,controller.B.id,() => {});
this.lowestPeriod = 0;
this.greatestPeriod = 0;
this.setGlobalMinAndMax();
this.processReadings();
this.setupSensorsToShowOnYAxis()
//---------------
// Bind Controls:
//---------------
control.onEvent(
ControllerButtonEvent.Pressed,
controller.up.id,
() => {
this.yScrollOffset = Math.min(this.yScrollOffset + GRAPH_Y_AXIS_SCROLL_RATE, 0)
if (this.yScrollOffset <= Y_SCROLL_GRAPH_MODE_CUT_OFF) {
this.uiState = UI_STATE.SENSOR_SELECTION
this.currentlySelectedSensorIndex = Math.abs(this.yScrollOffset + 60) / GRAPH_Y_AXIS_SCROLL_RATE
}
else
this.uiState = UI_STATE.GRAPH
this.normaliseReadingsOnYAxis();
this.setupSensorsToShowOnYAxis();
this.update() // For fast response to the above change
}
)
control.onEvent(
ControllerButtonEvent.Pressed,
controller.down.id,
() => {
this.yScrollOffset = Math.max(this.yScrollOffset - GRAPH_Y_AXIS_SCROLL_RATE, -(this.windowHeight + 40))
if (this.yScrollOffset <= Y_SCROLL_GRAPH_MODE_CUT_OFF) {
this.uiState = UI_STATE.SENSOR_SELECTION
this.currentlySelectedSensorIndex = Math.abs(this.yScrollOffset + 60) / GRAPH_Y_AXIS_SCROLL_RATE
}
else
this.uiState = UI_STATE.GRAPH
this.normaliseReadingsOnYAxis();
this.setupSensorsToShowOnYAxis();
this.update() // For fast response to the above change
}
)
control.onEvent(
ControllerButtonEvent.Pressed,
controller.left.id,
() => {
if (this.xScrollOffset > 0) {
this.xScrollOffset -= 1;
this.processReadings();
this.setupSensorsToShowOnYAxis();
this.update() // For fast response to the above changes
}
}
)
control.onEvent(
ControllerButtonEvent.Pressed,
controller.right.id,
() => {
if (datalogger.getNumberOfRows(this.startReadingAt[this.xScrollOffset + 1]) > 1) {
this.xScrollOffset += 1;
this.processReadings();
this.setupSensorsToShowOnYAxis();
this.update(); // For fast response to the above changes
}
}
)
// Select/Deselect a sensor to be drawn:
control.onEvent(
ControllerButtonEvent.Pressed,
controller.A.id,
() => {
if (this.uiState == UI_STATE.SENSOR_SELECTION) {
const sensorName = this.sensors[this.currentlySelectedSensorIndex].getName()
this.drawSensorStates[sensorName] = !this.drawSensorStates[sensorName]
this.setGlobalMinAndMax()
}
}
)
control.onEvent(
ControllerButtonEvent.Pressed,
controller.B.id,
() => {
this.app.popScene()
this.app.pushScene(new DataViewSelect(this.app))
}
)
}
/**
* Build this.sensors with the same sensors that are logged.
* This is neccessary for getMinimum() & getMaximum() which are required for normalisation & display.
*/
private findSensors() {
this.sensors = []
let sensorNames: string[] = []
const stdChunkSize = this.windowWidth - this.windowLeftBuffer - this.windowRightBuffer;
let dataStart = 1
while (datalogger.getNumberOfRows(dataStart) > 0) {
const rows = datalogger.getRows(dataStart, Math.min(stdChunkSize, datalogger.getNumberOfRows(dataStart))).split("\n")
for (let i = 0; i < rows.length - 1; i++) {
const sensorName = rows[i].split(",", 1)[SENSOR_COLUMNS.NAME]
let sensorNameAlreadyKnown = false
for (let j = 0; j < sensorNames.length; j++) {
if (sensorName == sensorNames[j]) {
sensorNameAlreadyKnown = true
break;
}
}
if (!sensorNameAlreadyKnown) {
sensorNames.push(sensorName)
}
}
dataStart += rows.length
}
this.sensors = sensorNames.map((name) => Sensor.getFromName(name))
}
/**
* Looks through the current active sensors and finds the lowest minimum & highest maximum among them.
* Sets: this.globalSensorMinimum & this.globalSensorMaximum.
* Re-invoked upon disabling a sensor.
* These two variables will then be displayed at the bot & top of the y-axis.
*/
private setGlobalMinAndMax() {
this.globalSensorMinimum = null
this.globalSensorMaximum = null
// Get the minimum and maximum sensor readings:
for (let i = 0; i < this.sensors.length; i++) {
const sensor: Sensor = this.sensors[i]
if (this.drawSensorStates[sensor.getName()]) {
// Minimum and Maximum sensor readings for the y-axis markers
if (sensor.getMinimum() < this.globalSensorMinimum || this.globalSensorMinimum == null)
this.globalSensorMinimum = sensor.getMinimum()
if (sensor.getMaximum() > this.globalSensorMaximum || this.globalSensorMaximum == null)
this.globalSensorMaximum = sensor.getMaximum()
}
}
}
/**
* Normalise the readings in this.dataRows relative to the screen().
* Invoked upon UP, DOWN, LEFT, RIGHT.
* Fills this.readings, then invokes this.normaliseReadings() to setup this.normalisedReadings
*/
private processReadings() {
this.rawCoordinates = {};
this.startReadingAt[this.xScrollOffset + 1] = 0;
this.lowestPeriod = 0;
/**
* Keep track of the last period & reading recorded
* Since if there is only 1 element on a new chunk (after scrolling right) the last reading of that prior chunk should be used.
* This creates the graphical effect that the new chunk is a direct continuation of the prior via a contigious line.
*/
let lastRawCoordinate: ISensorReadingLookup = {};
for (let i = 0; i < this.sensors.length; i++) {
this.rawCoordinates[this.sensors[i].getName()] = [];
lastRawCoordinate[this.sensors[i].getName()] = [0, 0];
}
// Aim to fill the graphical window area:
const targetNumberOfReadings = this.windowWidth - this.windowLeftBuffer - this.windowRightBuffer;
let dataStart = this.startReadingAt[this.xScrollOffset] + 1 // Skip header
let currentPeriod: number = 0 // X-axis component of coordinate
let currentReading: number = 0 // Y-axis component of coordinate
let foundAllReadings = false
while (!foundAllReadings && datalogger.getNumberOfRows(dataStart) > 0) {
const rows = datalogger.getRows(dataStart, Math.min(targetNumberOfReadings, datalogger.getNumberOfRows(dataStart))).split("\n")
for (let i = 0; i < rows.length; i++) {
const cols = rows[i].split(",") // [name, time, reading, event]
lastRawCoordinate[cols[SENSOR_COLUMNS.NAME]] = [currentReading, currentPeriod]
currentPeriod = +cols[SENSOR_COLUMNS.TIME]
currentReading = +cols[SENSOR_COLUMNS.READING]
// Setup the lowestPeriod if at the start:
if (dataStart == this.startReadingAt[this.xScrollOffset] + 1 && i == 0)
this.lowestPeriod = currentPeriod
// Add reading & period; check if full:
if (this.rawCoordinates[cols[SENSOR_COLUMNS.NAME]].length / 2 < targetNumberOfReadings) {
this.rawCoordinates[cols[SENSOR_COLUMNS.NAME]].push(currentPeriod) // X
this.rawCoordinates[cols[SENSOR_COLUMNS.NAME]].push(currentReading) // Y
// rawCoordinates for this sensor is full: Thus start reading next chunk (where next RIGHT press starts) here:
if ((this.rawCoordinates[cols[SENSOR_COLUMNS.NAME]].length / 2) >= targetNumberOfReadings && this.startReadingAt[this.xScrollOffset + 1] == 0)
this.startReadingAt[this.xScrollOffset + 1] = dataStart + i
// Check if all are done:
foundAllReadings = true
for (let j = 0; j < this.sensors.length; j++) {
if ((this.rawCoordinates[this.sensors[j].getName()].length / 2) < targetNumberOfReadings) {
foundAllReadings = false
break
}
}
if (foundAllReadings)
break
}
}
dataStart += rows.length
}
// this.startReadingAt was never set (this occurs in the case where the none of this.rawCoordinates were filled up)
// This means that all values were read; so just put the pointer at the end:
// This means that datalogger.getNumberOfRows(this.startReadingAt[this.xScrollOffset + 1]) returns 0
if (this.startReadingAt[this.xScrollOffset + 1] == 0) {
this.startReadingAt[this.xScrollOffset + 1] = dataStart; // this.rawCoordinates[sensorName].length
}
// Setup this.greatestPeriod & prepend the last read value if neccessary:
this.greatestPeriod = 0
for (let i = 0; i < this.sensors.length; i++) {
const sensorName = this.sensors[i].getName()
const lastPeriodIndex = this.rawCoordinates[sensorName].length - 2
if (this.rawCoordinates[sensorName][lastPeriodIndex] > this.greatestPeriod)
this.greatestPeriod = this.rawCoordinates[sensorName][lastPeriodIndex]
// If there is only one element add the last one from the prior screen,
// This makes it look like a smooth continuation.
if (this.rawCoordinates[sensorName].length == 1) {
const period = this.rawCoordinates[sensorName][0]
const reading = this.rawCoordinates[sensorName][1]
this.rawCoordinates[sensorName].push(period)
this.rawCoordinates[sensorName].push(reading)
}
}
this.resetProcessedCoordinates()
this.normaliseReadingsOnXAxis()
this.normaliseReadingsOnYAxis()
}
/**
* Reset this.normalisedCoordinates & fill to the same size as this.rawCoordinates - except all elements are undefined.
* This is neccessary for this.normaliseReadingsOnXAxis() && this.normaliseReadingsOnYAxis() to fill them,
* Since they will fill via index access instead of pushing.
*/
private resetProcessedCoordinates() {
this.processedCoordinates = []
for (let i = 0; i < this.sensors.length; i++)
this.processedCoordinates[i] = this.rawCoordinates[this.sensors[i].getName()].map(_ => undefined)
}
/**
* Calculate the x-axis position of each of these readings for use in .draw()
*/
private normaliseReadingsOnXAxis() {
for (let sensor = 0; sensor < this.sensors.length; sensor++) {
const sensorName: string = this.sensors[sensor].getName();
const minimum: number = this.lowestPeriod;
const range: number = minimum + this.greatestPeriod;
// Start at 1 since first readings are [x1,y1,x2,y2,....]:
for (let i = 0; i < this.rawCoordinates[sensorName].length - 1; i+=2) {
const norm1 = ((this.rawCoordinates[sensorName][i] - minimum) / range) * (Screen.WIDTH - this.windowRightBuffer - this.windowLeftBuffer - 2);
this.processedCoordinates[sensor][i] = this.windowLeftBuffer + norm1;
}
}
}
/**
* Calculate the y-axis position of each of these readings for use in .draw()
*/
private normaliseReadingsOnYAxis() {
const fromY = this.windowBotBuffer - (2 * this.yScrollOffset);
for (let sensor = 0; sensor < this.sensors.length; sensor++) {
const sensorName: string = this.sensors[sensor].getName();
const minimum: number = this.sensors[sensor].getMinimum();
const range: number = Math.abs(minimum) + this.sensors[sensor].getMaximum();
// Start at 0 since first readings are [x1,y1,x2,y2,....]:
for (let i = 1; i < this.rawCoordinates[sensorName].length - 1; i+=2) {
const norm1 = ((this.rawCoordinates[sensorName][i] - minimum) / range) * (BUFFERED_SCREEN_HEIGHT - fromY);
this.processedCoordinates[sensor][i] = Math.round(Screen.HEIGHT - norm1) - fromY;
}
}
}
/**
* Fill this.sensorsToShowOnYAxis with indices of senosrs that are permissable to draw without overlapping.
* Invoked after scrolling LEFT or RIGHT.
*/
private setupSensorsToShowOnYAxis() {
const boundary: number = 5;
const globalSensorMinimumDraw: number = this.windowHeight - this.windowBotBuffer + this.yScrollOffset + this.yScrollOffset - 4
const globalSensorMaximumDraw: number = Screen.HEIGHT - this.windowHeight + this.windowTopBuffer - Math.floor(0.1 * this.yScrollOffset)
this.sensorsIndicesForYAxis = []
for (let i = 0; i < this.sensors.length; i++) {
const y = this.processedCoordinates[i][1] - Math.floor(0.1 * this.yScrollOffset) - 1;
const minOverlap = Math.abs(globalSensorMinimumDraw - y) < boundary;
const maxOverlap = Math.abs(globalSensorMaximumDraw - y) < boundary;
if (!this.drawSensorStates[this.sensors[i].getName()] || minOverlap || maxOverlap)
continue
if (this.sensorsIndicesForYAxis.length == 0)
this.sensorsIndicesForYAxis.push(i);
let isOverlap = false;
for (let j = 0; j < this.sensorsIndicesForYAxis.length; j++) {
if (this.sensorsIndicesForYAxis[j] != i) {
const index = this.sensorsIndicesForYAxis[j];
const otherY = this.processedCoordinates[index][1] - Math.floor(0.1 * this.yScrollOffset) - 1;
const otherOverlap = Math.abs(y - otherY) < boundary;
const minOverlap = Math.abs(globalSensorMinimumDraw - otherY) < boundary;
const maxOverlap = Math.abs(globalSensorMaximumDraw - otherY) < boundary;
if (minOverlap || maxOverlap || (this.drawSensorStates[this.sensors[i].getName()] && otherOverlap)) {
isOverlap = true;
break;
}
}
}
if (!isOverlap)
this.sensorsIndicesForYAxis.push(i);
}
}
update() {
screen().fill(this.backgroundColor);
// Make graph region black:
screen().fillRect(
this.windowLeftBuffer,
this.windowTopBuffer + this.yScrollOffset + this.yScrollOffset,
Screen.WIDTH - this.windowLeftBuffer - this.windowRightBuffer,
this.windowHeight - this.windowBotBuffer - 4,
0
);
// Markers & axes:
this.draw_axes();
//------------------
// Draw sensor data:
//------------------
if (this.yScrollOffset > Y_SCROLL_GRAPH_MODE_CUT_OFF) {
// Draw the data from each sensor, as a separate coloured line: sensors may have variable quantities of data:
for (let sensor = 0; sensor < this.sensors.length; sensor++) {
// Each coord in [x1, y1, x2, y2, x3, y3, ...]:
for (let i = 0; i < this.processedCoordinates[sensor].length - 4; i+=2) {
// Not disabled:
if (this.drawSensorStates[this.sensors[sensor].getName()]) {
// Duplicate the line along the y axis to smooth out aliasing:
for (let j = -(PLOT_SMOOTHING_CONSTANT / 2); j < PLOT_SMOOTHING_CONSTANT / 2; j++) {
screen().drawLine(
this.processedCoordinates[sensor][i] + 1,
this.processedCoordinates[sensor][i+1] + j,
this.processedCoordinates[sensor][i+2] + 1,
this.processedCoordinates[sensor][i+3] + j,
SENSOR_COLORS[sensor % SENSOR_COLORS.length]
);
}
}
}
}
}
//---------------
// Sensor blocks:
//---------------
let y = this.windowHeight - 2 + (2 * this.yScrollOffset)
for (let i = 0; i < this.sensors.length; i++) {
// Black edges:
screen().fillRect(
5,
y,
142,
47,
15
)
// Sensor is disabled:
let blockColor: number = SENSOR_COLORS[(i % this.sensors.length) % SENSOR_COLORS.length]
let textColor: number = 15; // black
if (!this.drawSensorStates[this.sensors[i].getName()]) {
blockColor = 15; // black
textColor = 1; // white
}
// Coloured block:
screen().fillRect(
7,
y,
145,
45,
blockColor
)
// Blue outline for selected sensor:
if (this.uiState == UI_STATE.SENSOR_SELECTION && i == this.currentlySelectedSensorIndex) {
// Blue edges:
for (let thickness = 0; thickness < 3; thickness++) {
screen().drawRect(
7 - thickness,
y - thickness,
145 + thickness,
45 + thickness,
6
)
}
}
//--------------------
// Sensor information:
//--------------------
screen().print(
this.sensors[i].getName(),
12,
y + 2,
textColor
)
screen().print(
"Minimum: " + this.sensorMinsAndMaxs[i][MIN_MAX_COLUMNS.MIN],
12,
y + 16,
textColor
)
screen().print(
"Maximum: " + this.sensorMinsAndMaxs[i][MIN_MAX_COLUMNS.MAX],
12,
y + 32,
textColor
)
y += 55
}
}
/**
* Draw x & y axis Double-thickness each, in yellow
* Draw abscissa and ordinate
*/
draw_axes() {
for (let i = 0; i < 2; i++) {
screen().drawLine(
this.windowLeftBuffer,
this.windowHeight - this.windowBotBuffer + i + this.yScrollOffset + this.yScrollOffset,
this.windowWidth - this.windowRightBuffer,
this.windowHeight - this.windowBotBuffer + i + this.yScrollOffset + this.yScrollOffset,
5
);
screen().drawLine(
this.windowLeftBuffer + i,
this.windowTopBuffer + this.yScrollOffset + this.yScrollOffset,
this.windowLeftBuffer + i,
this.windowHeight - this.windowBotBuffer + this.yScrollOffset + this.yScrollOffset,
5
);
}
// Y axis:
if (this.yScrollOffset > Y_SCROLL_GRAPH_MODE_CUT_OFF) {
if (this.globalSensorMinimum != null && this.globalSensorMaximum != null) {
const globalSensorMinimum: string = this.globalSensorMinimum.toString()
const globalSensorMaximum: string = this.globalSensorMaximum.toString()
const globalSensorMinimumDraw: number = this.windowHeight - this.windowBotBuffer + this.yScrollOffset + this.yScrollOffset - 4
const globalSensorMaximumDraw: number = Screen.HEIGHT - this.windowHeight + this.windowTopBuffer - Math.floor(0.1 * this.yScrollOffset)
// Bot:
screen().print(
globalSensorMinimum,
(6 * font.charWidth) - (globalSensorMinimum.length * font.charWidth),
globalSensorMinimumDraw,
15
);
// Middle y-axis values: one per sensor: skip if too close to others:
for (let i = 0; i < this.sensorsIndicesForYAxis.length; i++) {
const index = this.sensorsIndicesForYAxis[i]
if (this.drawSensorStates[this.sensors[index].getName()]) {
const yWrite: string = this.rawCoordinates[this.sensors[index].getName()][1].toString().slice(0, 5);
const yDraw = this.processedCoordinates[index][1] - Math.floor(0.1 * this.yScrollOffset) - 1;
screen().print(
yWrite,
(6 * font.charWidth) - (yWrite.length * font.charWidth),
yDraw,
15
);
}
}
// Top:
screen().print(
globalSensorMaximum,
(6 * font.charWidth) - (globalSensorMaximum.length * font.charWidth),
globalSensorMaximumDraw,
15
)
}
}
// X axis:
// Start
screen().print(
this.lowestPeriod / 1000 + "s",
this.windowLeftBuffer - 2,
this.windowHeight - this.windowBotBuffer + this.yScrollOffset + this.yScrollOffset + 4,
15
)
// End:
const end: string = this.greatestPeriod / 1000 + "s";
screen().print(
end,
Screen.WIDTH - this.windowRightBuffer - (end.length * font.charWidth),
this.windowHeight - this.windowBotBuffer + this.yScrollOffset + this.yScrollOffset + 4,
15
)
}
}
}