forked from google/dynamic-video-depth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
364 lines (337 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import time
import torch
from options import options_train
import datasets
import models
from loggers import loggers
from util.util_print import str_error, str_stage, str_verbose, str_warning
from util import util_loadlib as loadlib
import pandas as pd
import torch.multiprocessing as mp
import torch.distributed as dist
def main():
# Option Parsing
print(str_stage, "Parsing arguments")
opt, unique_opt_params = options_train.parse()
# Get all parse done, including subparsers
print(opt)
# Setting up log directory
print(str_stage, "Setting up logging directory")
if opt.exprdir_no_prefix:
exprdir = ''
exprdir += ('' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
else:
exprdir = '{}_{}_{}'.format(opt.net, opt.dataset, opt.lr)
exprdir += ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
opt.exprdir = exprdir
if opt.full_logdir is None:
logdir = os.path.join(opt.logdir, exprdir, str(opt.expr_id))
else:
logdir = opt.full_logdir
if opt.resume == 0:
if os.path.isdir(logdir):
if opt.force_overwrite:
print(
str_warning, (
"removing Experiment %d at\n\t%s\n"
) % (opt.expr_id, logdir)
)
os.system('rm -rf ' + logdir)
elif opt.expr_id <= 0:
print(
str_warning, (
"Will remove Experiment %d at\n\t%s\n"
"Do you want to continue? (y/n)"
) % (opt.expr_id, logdir)
)
need_input = True
while need_input:
response = input().lower()
if response in ('y', 'n'):
need_input = False
if response == 'n':
print(str_stage, "User decides to quit")
sys.exit()
os.system('rm -rf ' + logdir)
else:
raise ValueError(str_error + " Refuse to remove positive expr_id")
os.system('mkdir -p ' + logdir)
else:
if not os.path.isdir(logdir):
print(str_warning, 'training from scratch...')
os.system('mkdir -p ' + logdir)
else:
opt_f_old = os.path.join(logdir, 'opt.pt')
opt = options_train.overwrite(opt, opt_f_old, unique_opt_params)
# Save opt
if os.path.exists(os.path.join(logdir, 'opt.pt')) and opt.pt_no_overwrite:
print(str_warning, 'not overwriting previous opt.pt, this should only be set when doing on the fly eval.')
pass
else:
torch.save(vars(opt), os.path.join(logdir, 'opt.pt'))
with open(os.path.join(logdir, 'opt.txt'), 'w') as fout:
for k, v in vars(opt).items():
fout.write('%20s\t%-20s\n' % (k, v))
opt.full_logdir = logdir
print(str_verbose, "Logging directory set to: %s" % logdir)
# Multiprocess distributed training
if opt.multiprocess_distributed:
print(str_stage, 'using multiprocessing distributed parallel model')
if opt.gpu != 'none':
print(
str_warning, f'ignoring the gpu set up in opt: {opt.gpu}. Will use all gpus in each node.')
ngpus = torch.cuda.device_count()
opt.ngpus = ngpus
opt.world_size = opt.ngpus * opt.world_size
print(f'using {ngpus} gpus')
mp.spawn(main_worker, nprocs=ngpus, args=(ngpus, opt))
else:
opt.global_rank = 0
main_worker(None, 1, opt=opt)
def main_worker(local_rank, ngpus, opt):
logdir = opt.full_logdir
exprdir = opt.exprdir
if local_rank is None:
print(str_stage, "Setting device")
# Single GPU training case
if opt.gpu == '-1':
device = torch.device('cpu')
else:
loadlib.set_gpu(opt.gpu)
device = torch.device('cuda')
global_rank = 0 # as if this is the master node
else:
if opt.multiprocess_distributed:
opt.global_rank = opt.node_rank * opt.ngpus + local_rank
if opt.global_rank == 0:
print(str_stage, "setting up devices...")
loadlib.set_gpu(str(local_rank))
device = torch.device('cuda')
if opt.global_rank == 0:
print(str_stage, "Setting up process groups....")
dist.init_process_group(backend=opt.dist_backend, init_method=opt.init_url,
world_size=opt.world_size, rank=opt.global_rank)
global_rank = opt.global_rank
if opt.manual_seed is not None:
loadlib.set_manual_seed(opt.manual_seed)
def _safe_print(*args, **kargs):
if global_rank == 0:
print(*args, **kargs, flush=True)
# Setting up loggers
_safe_print(str_stage, "Setting up loggers")
if opt.resume != 0 and os.path.isfile(os.path.join(logdir, 'best.pt')):
try:
prev_best_data = torch.load(os.path.join(logdir, 'best.pt'))
prev_best = prev_best_data['loss_eval']
del prev_best_data
except KeyError:
prev_best = None
else:
prev_best = None
if global_rank == 0:
best_model_logger = loggers.ModelSaveLogger(
os.path.join(logdir, 'best.pt'),
period=1,
save_optimizer=True,
save_best=True,
prev_best=prev_best
)
logger_list = [
loggers.TerminateOnNaN(),
loggers.ProgbarLogger(allow_unused_fields='all',
interval=opt.progbar_interval, no_accum=opt.no_accum),
loggers.CsvLogger(
os.path.join(logdir, 'epoch_loss.csv'),
allow_unused_fields='all'
),
loggers.ModelSaveLogger(
os.path.join(logdir, 'nets', '{epoch:04d}.pt'),
period=opt.save_net,
save_optimizer=opt.save_net_opt
),
loggers.ModelSaveLogger(
os.path.join(logdir, 'checkpoint.pt'),
period=1,
save_optimizer=True
),
best_model_logger,
]
if opt.log_batch:
logger_list.append(
loggers.BatchCsvLogger(
os.path.join(logdir, 'batch_loss.csv'),
allow_unused_fields='all'
)
)
if opt.tensorboard:
if opt.tensorboard_keyword != 'none':
[parent_dir, sub_dir] = logdir.split(f'/{opt.tensorboard_keyword}/')
tf_logdir = os.path.join(
parent_dir, opt.tensorboard_keyword, 'tensorboard', sub_dir)
else:
tf_logdir = os.path.join(
opt.logdir, 'tensorboard', exprdir, str(opt.expr_id))
if os.path.exists(tf_logdir) and opt.resume == 0:
os.system('rm -r ' + tf_logdir)
tensorboard_logger = loggers.TensorBoardLogger(
tf_logdir, opt.html_logger,
allow_unused_fields='all'
)
logger_list.append(
tensorboard_logger
)
logger = loggers.ComposeLogger(logger_list)
if opt.html_logger:
html_summary_filepath = os.path.join(opt.full_logdir, 'summary')
html_logger = loggers.HtmlLogger(html_summary_filepath)
logger_list.append(html_logger)
else:
# other procs do no log.
logger = loggers.ComposeLogger([loggers.TerminateOnNaN()])
# setting up models
_safe_print(str_stage, "Setting up models")
Model = models.get_model(opt.net)
model = Model(opt, logger)
if global_rank == 0 and opt.tensorboard:
model._register_tensorboard(tensorboard_logger)
_safe_print(str_stage, "Setting up data loaders")
if global_rank == 0:
start_time = time.time()
dataset = datasets.get_dataset(opt.dataset)
dataset_train = dataset(opt, mode='train', model=model)
dataset_vali = dataset(opt, mode='vali', model=model)
if opt.multiprocess_distributed:
dist.barrier()
_safe_print(str_stage, "data loaders set")
if hasattr(model, 'update_opt'):
model.update_opt(opt)
initial_epoch = 1
if opt.resume != 0:
if opt.resume == -1:
net_filename = os.path.join(logdir, 'checkpoint.pt')
elif opt.resume == -2:
net_filename = os.path.join(logdir, 'best.pt')
else:
net_filename = os.path.join(
logdir, 'nets', '{epoch:04d}.pt').format(epoch=opt.resume)
if not os.path.isfile(net_filename):
_safe_print(str_warning, ("Network file not found for opt.resume=%d. "
"Starting from scratch") % opt.resume)
else:
# if global_rank == 0:
additional_values = model.load_state_dict(
net_filename, load_optimizer='auto')
try:
initial_epoch += additional_values['epoch']
except KeyError as err:
# Old saved model does not have epoch as additional values
print(str(err))
epoch_loss_csv = os.path.join(logdir, 'epoch_loss.csv')
if opt.resume == -1:
try:
initial_epoch += pd.read_csv(epoch_loss_csv)[
'epoch'].max()
except pd.errors.ParserError:
with open(epoch_loss_csv, 'r') as f:
lines = f.readlines()
initial_epoch += max([int(l.split(',')[0])
for l in lines[1:]])
else:
initial_epoch += opt.resume
# wait until model is loaded.
if opt.multiprocess_distributed:
dist.barrier()
model.to(device)
_safe_print(model)
_safe_print("# model parameters: {:,d}".format(model.num_parameters()))
# convert to DDP and sync params
if opt.multiprocess_distributed:
for net in model._nets:
net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net)
net = torch.nn.parallel.DistributedDataParallel(net)
# sync parameters before training:
_safe_print(str_stage, 'syncing parameters....')
for net in model._nets:
for p in net.parameters():
dist.broadcast(p, 0, async_op=False)
# Setting up data loaders
# Get custom collate function to deal with variable size inputs.
if hasattr(Model, 'collate_fn'):
collate_fn = Model.collate_fn
else:
# use default collate function instead.
collate_fn = torch.utils.data._utils.collate.default_collate
if opt.multiprocess_distributed:
training_sampler = torch.utils.data.distributed.DistributedSampler(
dataset_train)
call_back = training_sampler.set_epoch
training_sampler.set_epoch(opt.epoch)
else:
training_sampler = None
call_back = None
dataloader_train = torch.utils.data.DataLoader(
dataset_train,
batch_size=opt.batch_size,
shuffle=(training_sampler is None),
sampler=training_sampler,
num_workers=opt.workers,
pin_memory=True,
drop_last=True,
collate_fn=collate_fn
)
dataloader_vali = torch.utils.data.DataLoader(
dataset_vali,
batch_size=opt.batch_size,
num_workers=opt.workers,
pin_memory=True,
drop_last=True,
shuffle=False,
collate_fn=collate_fn
)
if global_rank == 0:
_safe_print(str_verbose, "Time spent in data IO initialization: %.2fs" %
(time.time() - start_time))
_safe_print(str_verbose, "# training points: " + str(len(dataset_train)))
_safe_print(str_verbose, "# training batches per epoch: " + str(len(dataloader_train)))
_safe_print(str_verbose, "# test batches: " + str(len(dataloader_vali)))
# Training
if opt.epoch > 0:
_safe_print(str_stage, "Training")
model.train_epoch(
dataloader_train,
dataloader_vali=dataloader_vali,
max_batches_per_train=opt.epoch_batches,
epochs=opt.epoch,
initial_epoch=initial_epoch,
max_batches_per_vali=opt.vali_batches,
vali_at_start=opt.vali_at_start,
train_epoch_callback=call_back
)
if opt.test_template is not None:
del model
torch.cuda.empty_cache()
with open(opt.test_template) as f:
cmd = f.readlines()[0]
cmd = cmd.format(suffix_expand=opt.suffix.format(**vars(opt)), **vars(opt))
from subprocess import call
with open(os.path.join(opt.full_logdir, 'test_cmd.sh'), 'w') as f:
f.write(cmd)
call(cmd, shell=True)
if __name__ == '__main__':
mp.set_start_method('spawn', force=True)
main()