-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
42 lines (30 loc) · 1.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import numpy as np
from load_data import load_images, load_dataset
from process_data import detect_face
from embedding import get_embedded_data
from train import get_svm_model, normalize
from keras.models import load_model
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import joblib
if __name__=='__main__':
input_dir = 'play'
images = load_images(input_dir)
cropped_images = list()
for i in range(len(images)):
cropped_images.append(detect_face(images[i]))
face_model = load_model(os.path.join('model', 'facenet_keras.h5'))
cropped_images = get_embedded_data(face_model, cropped_images)
cropped_images = normalize(cropped_images)
model = joblib.load(os.path.join('model', 'svm_model.sav'))
pred_test = model.predict(cropped_images)
pred_proba = model.predict_proba(cropped_images)
label_encode = LabelEncoder()
label_encode.classes_ = np.load(os.path.join('model','classes.npy'))
predicted_names = label_encode.inverse_transform(pred_test)
for i, image in enumerate(images):
# plt.figure()
plt.imshow(image)
plt.title("Predicted: "+predicted_names[i]+" with "+str(round(pred_proba[i][pred_test[i]]*100, 2))+"% confidence.")
plt.show()