-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathload_data.py
46 lines (29 loc) · 1.05 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import numpy as np
import cv2
def load_images(directory):
filenames = os.listdir(directory)
faces = list()
for filename in filenames:
face = cv2.imread(os.path.join(directory, filename))
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
faces.append(face)
return faces
def load_dataset(directory):
X, y = list(), list()
for subdir in os.listdir(directory):
path = os.path.join(directory, subdir)
if not os.path.isdir(path):
continue
faces = load_images(path)
labels = [subdir for _ in range(len(faces))]
print("Loaded ", len(faces), " examples for class ", subdir, ".")
X.extend(faces)
y.extend(labels)
return np.asarray(X), np.asarray(y)
if __name__=='__main__':
input_dir = 'data'
train_dir = os.path.join(input_dir,'processed_data', 'train')
validation_dir = os.path.join(input_dir,'processed_data', 'validation')
trainX, trainy = load_dataset(train_dir)
testX, testy = load_dataset(validation_dir)