-
Notifications
You must be signed in to change notification settings - Fork 0
/
mem_transformer.py
859 lines (675 loc) · 32 KB
/
mem_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
import sys
import math
import functools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
sys.path.append('utils')
from proj_adaptive_softmax import ProjectedAdaptiveLogSoftmax
from log_uniform_sampler import LogUniformSampler, sample_logits
class PositionalEmbedding(nn.Module):
def __init__(self, demb):
super(PositionalEmbedding, self).__init__()
self.demb = demb
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
self.register_buffer('inv_freq', inv_freq)
def forward(self, pos_seq, bsz=None):
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
if bsz is not None:
return pos_emb[:,None,:].expand(-1, bsz, -1)
else:
return pos_emb[:,None,:]
class PositionwiseFF(nn.Module):
def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
super(PositionwiseFF, self).__init__()
self.d_model = d_model
self.d_inner = d_inner
self.dropout = dropout
self.CoreNet = nn.Sequential(
nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Linear(d_inner, d_model),
nn.Dropout(dropout),
)
self.layer_norm = nn.LayerNorm(d_model)
self.pre_lnorm = pre_lnorm
def forward(self, inp):
if self.pre_lnorm:
##### layer normalization + positionwise feed-forward
core_out = self.CoreNet(self.layer_norm(inp))
##### residual connection
output = core_out + inp
else:
##### positionwise feed-forward
core_out = self.CoreNet(inp)
##### residual connection + layer normalization
output = self.layer_norm(inp + core_out)
return output
class MultiHeadAttn(nn.Module):
def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
pre_lnorm=False):
super(MultiHeadAttn, self).__init__()
self.n_head = n_head
self.d_model = d_model
self.d_head = d_head
self.dropout = dropout
self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)
self.drop = nn.Dropout(dropout)
self.dropatt = nn.Dropout(dropatt)
self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)
self.layer_norm = nn.LayerNorm(d_model)
self.scale = 1 / (d_head ** 0.5)
self.pre_lnorm = pre_lnorm
def forward(self, h, attn_mask=None, mems=None):
##### multihead attention
# [hlen x bsz x n_head x d_head]
if mems is not None:
c = torch.cat([mems, h], 0)
else:
c = h
if self.pre_lnorm:
##### layer normalization
c = self.layer_norm(c)
head_q = self.q_net(h)
head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)
head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)
# [qlen x klen x bsz x n_head]
attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
attn_score.mul_(self.scale)
if attn_mask is not None and attn_mask.any().item():
if attn_mask.dim() == 2:
attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
elif attn_mask.dim() == 3:
attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))
# [qlen x klen x bsz x n_head]
attn_prob = F.softmax(attn_score, dim=1)
attn_prob = self.dropatt(attn_prob)
# [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
attn_vec = attn_vec.contiguous().view(
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
##### linear projection
attn_out = self.o_net(attn_vec)
attn_out = self.drop(attn_out)
if self.pre_lnorm:
##### residual connection
output = h + attn_out
else:
##### residual connection + layer normalization
output = self.layer_norm(h + attn_out)
return output
class RelMultiHeadAttn(nn.Module):
def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False):
super(RelMultiHeadAttn, self).__init__()
self.n_head = n_head
self.d_model = d_model
self.d_head = d_head
self.dropout = dropout
self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)
self.drop = nn.Dropout(dropout)
self.dropatt = nn.Dropout(dropatt)
self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)
self.layer_norm = nn.LayerNorm(d_model)
self.scale = 1 / (d_head ** 0.5)
self.pre_lnorm = pre_lnorm
def _parallelogram_mask(self, h, w, left=False):
mask = torch.ones((h, w)).byte()
m = min(h, w)
mask[:m,:m] = torch.triu(mask[:m,:m])
mask[-m:,-m:] = torch.tril(mask[-m:,-m:])
if left:
return mask
else:
return mask.flip(0)
def _shift(self, x, qlen, klen, mask, left=False):
if qlen > 1:
zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
device=x.device, dtype=x.dtype)
else:
zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)
if left:
mask = mask.flip(1)
x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
else:
x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)
x = x_padded.masked_select(mask[:,:,None,None]) \
.view(qlen, klen, x.size(2), x.size(3))
return x
def _rel_shift(self, x, zero_triu=False):
zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]),
device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=1)
x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:])
x = x_padded[1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(0), x.size(1)))
x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]
return x
def forward(self, w, r, attn_mask=None, mems=None):
raise NotImplementedError
class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
def __init__(self, *args, **kwargs):
super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)
self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)
def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None):
# rlen = lenq or rlen = 2*lenq (depends on if there is mem)
# w -> (q_len, B, emb_size)
# r -> (r_len, 1, emb_size)
# r_w_bias -> (n_head, d_head)
# r_r_bias -> (n_head, d_head)
# attn_mask -> (q_len, k_len, 1)
qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)
if mems is not None:
cat = torch.cat([mems, w], 0)
print("mems.shape", mems.shape)
print("cat.shape", cat.shape)
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(cat))
else:
w_heads = self.qkv_net(cat)
r_head_k = self.r_net(r)
# w_head_q, w_head_k, w_head_v -> (2*qlen, B, emb_size)
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
# take the latter half because "mems" and "w" are concatenated
w_head_q = w_head_q[-qlen:]
else:
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(w))
else:
w_heads = self.qkv_net(w)
r_head_k = self.r_net(r)
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
# klen = lenq or klen = 2*lenq (depends on if there is mem)
klen = w_head_k.size(0)
# w_head_q -> (q_len, B, emb_size)
w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head
w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # klen x bsz x n_head x d_head
w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # klen x bsz x n_head x d_head
# r_head_k is the Q in Appendix B
r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # klen x n_head x d_head
#### compute attention score
# w_head_q = E_{x_i}^T @ W_q^T
# r_w_bias = u^T
# rw_head_q = E_{x_i}^T @ W_q^T + u^T
rw_head_q = w_head_q + r_w_bias # qlen x bsz x n_head x d_head
AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head
# w_head_q = E_{x_i}^T @ W_q^T
# r_r_bias = v^T
# rr_head_q = E_{x_i}^T @ W_q^T + v^T
rr_head_q = w_head_q + r_r_bias
"""
Appendix B of paper, we calculate B_hat, D_hat, and then shift left.
The shifted tensor is later going to be masked to get the B and D.
"""
# B_hat = q@Q^T
# D_hat = v^T@Q^T
# B = self._rel_shift(B_hat)
# D = self._rel_shift(D_hat)
BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head
BD = self._rel_shift(BD)
# [qlen x klen x bsz x n_head]
attn_score = AC + BD
attn_score.mul_(self.scale)
print('(RelPartialLearnableMultiHeadAttn.forward) attn_mask')
print(attn_mask[:,:,0])
"""
attn_mask is concatenation of zero tensor of shape (q_len, m_len),
and upper triangle of shape (q_len, q_len) with diag=1
"""
#### compute attention probability
if attn_mask is not None and attn_mask.any().item():
if attn_mask.dim() == 2:
attn_score = attn_score.float().masked_fill(
attn_mask[None,:,:,None], -float('inf')).type_as(attn_score)
elif attn_mask.dim() == 3:
attn_score = attn_score.float().masked_fill(
attn_mask[:,:,:,None], -float('inf')).type_as(attn_score)
# [qlen x klen x bsz x n_head]
attn_prob = F.softmax(attn_score, dim=1)
attn_prob = self.dropatt(attn_prob)
#### compute attention vector
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))
# [qlen x bsz x n_head x d_head]
attn_vec = attn_vec.contiguous().view(
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
##### linear projection
attn_out = self.o_net(attn_vec)
attn_out = self.drop(attn_out)
if self.pre_lnorm:
##### residual connection
output = w + attn_out
else:
##### residual connection + layer normalization
output = self.layer_norm(w + attn_out)
return output
class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
def __init__(self, *args, **kwargs):
super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)
def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None):
# r_emb: [klen, n_head, d_head], used for term B
# r_w_bias: [n_head, d_head], used for term C
# r_bias: [klen, n_head], used for term D
qlen, bsz = w.size(0), w.size(1)
if mems is not None:
cat = torch.cat([mems, w], 0)
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(cat))
else:
w_heads = self.qkv_net(cat)
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
w_head_q = w_head_q[-qlen:]
else:
if self.pre_lnorm:
w_heads = self.qkv_net(self.layer_norm(w))
else:
w_heads = self.qkv_net(w)
w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
klen = w_head_k.size(0)
w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)
if klen > r_emb.size(0):
r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
r_emb = torch.cat([r_emb_pad, r_emb], 0)
r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
r_bias = torch.cat([r_bias_pad, r_bias], 0)
else:
r_emb = r_emb[-klen:]
r_bias = r_bias[-klen:]
#### compute attention score
rw_head_q = w_head_q + r_w_bias[None] # qlen x bsz x n_head x d_head
AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head
B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb)) # qlen x klen x bsz x n_head
D_ = r_bias[None, :, None] # 1 x klen x 1 x n_head
BD = self._rel_shift(B_ + D_)
# [qlen x klen x bsz x n_head]
attn_score = AC + BD
attn_score.mul_(self.scale)
#### compute attention probability
if attn_mask is not None and attn_mask.any().item():
if attn_mask.dim() == 2:
attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
elif attn_mask.dim() == 3:
attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))
# [qlen x klen x bsz x n_head]
attn_prob = F.softmax(attn_score, dim=1)
attn_prob = self.dropatt(attn_prob)
#### compute attention vector
attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))
# [qlen x bsz x n_head x d_head]
attn_vec = attn_vec.contiguous().view(
attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
##### linear projection
attn_out = self.o_net(attn_vec)
attn_out = self.drop(attn_out)
if self.pre_lnorm:
##### residual connection
output = w + attn_out
else:
##### residual connection + layer normalization
output = self.layer_norm(w + attn_out)
return output
class DecoderLayer(nn.Module):
def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
super(DecoderLayer, self).__init__()
self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
pre_lnorm=kwargs.get('pre_lnorm'))
def forward(self, dec_inp, dec_attn_mask=None, mems=None):
output = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
mems=mems)
output = self.pos_ff(output)
return output
class RelLearnableDecoderLayer(nn.Module):
def __init__(self, n_head, d_model, d_head, d_inner, dropout,
**kwargs):
super(RelLearnableDecoderLayer, self).__init__()
self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
**kwargs)
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
pre_lnorm=kwargs.get('pre_lnorm'))
def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None):
output = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
attn_mask=dec_attn_mask,
mems=mems)
output = self.pos_ff(output)
return output
class RelPartialLearnableDecoderLayer(nn.Module):
def __init__(self, n_head, d_model, d_head, d_inner, dropout,
**kwargs):
super(RelPartialLearnableDecoderLayer, self).__init__()
self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
d_head, dropout, **kwargs)
self.pos_ff = PositionwiseFF(d_model, d_inner, dropout,
pre_lnorm=kwargs.get('pre_lnorm'))
def forward(self, dec_inp, r, r_w_bias, r_r_bias, dec_attn_mask=None, mems=None):
print('(RelPartialLearnableDecoderLayer.forward) dec_inp.shape', dec_inp.shape)
output = self.dec_attn(dec_inp, r, r_w_bias, r_r_bias,
attn_mask=dec_attn_mask,
mems=mems)
output = self.pos_ff(output)
return output
class AdaptiveEmbedding(nn.Module):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
sample_softmax=False):
super(AdaptiveEmbedding, self).__init__()
self.n_token = n_token
self.d_embed = d_embed
self.cutoffs = cutoffs + [n_token]
self.div_val = div_val
self.d_proj = d_proj
self.emb_scale = d_proj ** 0.5
self.cutoff_ends = [0] + self.cutoffs
self.emb_layers = nn.ModuleList()
self.emb_projs = nn.ParameterList()
if div_val == 1:
self.emb_layers.append(
nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
)
if d_proj != d_embed:
self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed)))
else:
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
d_emb_i = d_embed // (div_val ** i)
self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_emb_i)))
def forward(self, inp):
if self.div_val == 1:
embed = self.emb_layers[0](inp)
if self.d_proj != self.d_embed:
embed = F.linear(embed, self.emb_projs[0])
else:
param = next(self.parameters())
inp_flat = inp.view(-1)
emb_flat = torch.zeros([inp_flat.size(0), self.d_proj],
dtype=param.dtype, device=param.device)
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
indices_i = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
inp_i = inp_flat.index_select(0, indices_i) - l_idx
emb_i = self.emb_layers[i](inp_i)
emb_i = F.linear(emb_i, self.emb_projs[i])
emb_flat.index_copy_(0, indices_i, emb_i)
embed = emb_flat.view(*inp.size(), self.d_proj)
embed.mul_(self.emb_scale)
return embed
class MemTransformerLM(nn.Module):
def __init__(self, n_token, n_layer, n_head, d_model, d_head, d_inner,
dropout, dropatt, tie_weight=True, d_embed=None,
div_val=1, tie_projs=[False], pre_lnorm=False,
tgt_len=None, ext_len=None, mem_len=None,
cutoffs=[], adapt_inp=False,
same_length=False, attn_type=0, clamp_len=-1,
sample_softmax=-1):
super(MemTransformerLM, self).__init__()
self.n_token = n_token
d_embed = d_model if d_embed is None else d_embed
self.d_embed = d_embed
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.word_emb = AdaptiveEmbedding(n_token, d_embed, d_model, cutoffs,
div_val=div_val)
self.drop = nn.Dropout(dropout)
self.n_layer = n_layer
self.tgt_len = tgt_len
self.mem_len = mem_len
self.ext_len = ext_len
self.max_klen = tgt_len + ext_len + mem_len
self.attn_type = attn_type
self.layers = nn.ModuleList()
if attn_type == 0: # the default attention
for i in range(n_layer):
self.layers.append(
RelPartialLearnableDecoderLayer(
n_head, d_model, d_head, d_inner, dropout,
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
dropatt=dropatt, pre_lnorm=pre_lnorm)
)
elif attn_type == 1: # learnable embeddings
for i in range(n_layer):
self.layers.append(
RelLearnableDecoderLayer(
n_head, d_model, d_head, d_inner, dropout,
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
dropatt=dropatt, pre_lnorm=pre_lnorm)
)
elif attn_type in [2, 3]: # absolute embeddings
for i in range(n_layer):
self.layers.append(
DecoderLayer(
n_head, d_model, d_head, d_inner, dropout,
dropatt=dropatt, pre_lnorm=pre_lnorm)
)
self.sample_softmax = sample_softmax
# use sampled softmax
if sample_softmax > 0:
self.out_layer = nn.Linear(d_model, n_token)
if tie_weight:
self.out_layer.weight = self.word_emb.weight
self.tie_weight = tie_weight
self.sampler = LogUniformSampler(n_token, sample_softmax)
# use adaptive softmax (including standard softmax)
else:
self.crit = ProjectedAdaptiveLogSoftmax(n_token, d_embed, d_model,
cutoffs, div_val=div_val)
if tie_weight:
for i in range(len(self.crit.out_layers)):
self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight
if tie_projs:
for i, tie_proj in enumerate(tie_projs):
if tie_proj and div_val == 1 and d_model != d_embed:
self.crit.out_projs[i] = self.word_emb.emb_projs[0]
elif tie_proj and div_val != 1:
self.crit.out_projs[i] = self.word_emb.emb_projs[i]
self.same_length = same_length
self.clamp_len = clamp_len
self._create_params()
def backward_compatible(self):
self.sample_softmax = -1
def _create_params(self):
if self.attn_type == 0: # default attention
self.pos_emb = PositionalEmbedding(self.d_model)
self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
elif self.attn_type == 1: # learnable
self.r_emb = nn.Parameter(torch.Tensor(
self.n_layer, self.max_klen, self.n_head, self.d_head))
self.r_w_bias = nn.Parameter(torch.Tensor(
self.n_layer, self.n_head, self.d_head))
self.r_bias = nn.Parameter(torch.Tensor(
self.n_layer, self.max_klen, self.n_head))
elif self.attn_type == 2: # absolute standard
self.pos_emb = PositionalEmbedding(self.d_model)
elif self.attn_type == 3: # absolute deeper SA
self.r_emb = nn.Parameter(torch.Tensor(
self.n_layer, self.max_klen, self.n_head, self.d_head))
def reset_length(self, tgt_len, ext_len, mem_len):
self.tgt_len = tgt_len
self.mem_len = mem_len
self.ext_len = ext_len
def init_mems(self):
if self.mem_len > 0:
mems = []
param = next(self.parameters())
for i in range(self.n_layer+1):
empty = torch.empty(0, dtype=param.dtype, device=param.device)
mems.append(empty)
return mems
else:
return None
def _update_mems(self, hids, mems, qlen, mlen):
# does not deal with None
if mems is None: return None
# mems is not None
assert len(hids) == len(mems), 'len(hids) != len(mems)'
print(f"(Before) hids[0].shape {hids[0].shape}, mems[0].shape {mems[0].shape}")
# There are `mlen + qlen` steps that can be cached into mems
# For the next step, the last `ext_len` of the `qlen` tokens
# will be used as the extended context. Hence, we only cache
# the tokens from `mlen + qlen - self.ext_len - self.mem_len`
# to `mlen + qlen - self.ext_len`.
with torch.no_grad():
new_mems = []
end_idx = mlen + max(0, qlen - 0 - self.ext_len)
beg_idx = max(0, end_idx - self.mem_len)
for i in range(len(hids)):
cat = torch.cat([mems[i], hids[i]], dim=0)
new_mems.append(cat[beg_idx:end_idx].detach())
print(f"(After) hids[0].shape {hids[0].shape}, new_mems[0].shape {new_mems[0].shape}")
return new_mems
def _forward(self, dec_inp, mems=None):
qlen, bsz = dec_inp.size()
print("(MemTransformerLM._forward) dec_inp.shape", dec_inp.shape)
# word_emb.shape = [mem_len, B, emb_size]
word_emb = self.word_emb(dec_inp)
print("(MemTransformerLM._forward) word_emb.shape", word_emb.shape)
mlen = mems[0].size(0) if mems is not None else 0
klen = mlen + qlen
if self.same_length:
all_ones = word_emb.new_ones(qlen, klen)
mask_len = klen - self.mem_len
if mask_len > 0:
mask_shift_len = qlen - mask_len
else:
mask_shift_len = qlen
dec_attn_mask = (torch.triu(all_ones, 1+mlen)
+ torch.tril(all_ones, -mask_shift_len)).bool()[:, :, None] # -1
else:
dec_attn_mask = torch.triu(
word_emb.new_ones(qlen, klen), diagonal=1+mlen).bool()[:,:,None]
hids = []
if self.attn_type == 0: # default
pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device,
dtype=word_emb.dtype)
if self.clamp_len > 0:
pos_seq.clamp_(max=self.clamp_len)
pos_emb = self.pos_emb(pos_seq)
core_out = self.drop(word_emb)
pos_emb = self.drop(pos_emb)
hids.append(core_out)
for i, layer in enumerate(self.layers):
mems_i = None if mems is None else mems[i]
core_out = layer(core_out, pos_emb, self.r_w_bias,
self.r_r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
hids.append(core_out)
elif self.attn_type == 1: # learnable
core_out = self.drop(word_emb)
hids.append(core_out)
for i, layer in enumerate(self.layers):
if self.clamp_len > 0:
r_emb = self.r_emb[i][-self.clamp_len :]
r_bias = self.r_bias[i][-self.clamp_len :]
else:
r_emb, r_bias = self.r_emb[i], self.r_bias[i]
mems_i = None if mems is None else mems[i]
core_out = layer(core_out, r_emb, self.r_w_bias[i],
r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
hids.append(core_out)
elif self.attn_type == 2: # absolute
pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
dtype=word_emb.dtype)
if self.clamp_len > 0:
pos_seq.clamp_(max=self.clamp_len)
pos_emb = self.pos_emb(pos_seq)
core_out = self.drop(word_emb + pos_emb[-qlen:])
hids.append(core_out)
for i, layer in enumerate(self.layers):
mems_i = None if mems is None else mems[i]
if mems_i is not None and i == 0:
mems_i += pos_emb[:mlen]
core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
mems=mems_i)
hids.append(core_out)
elif self.attn_type == 3:
core_out = self.drop(word_emb)
hids.append(core_out)
for i, layer in enumerate(self.layers):
mems_i = None if mems is None else mems[i]
if mems_i is not None and mlen > 0:
cur_emb = self.r_emb[i][:-qlen]
cur_size = cur_emb.size(0)
if cur_size < mlen:
cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
else:
cur_emb = cur_emb[-mlen:]
mems_i += cur_emb.view(mlen, 1, -1)
core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)
core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
mems=mems_i)
hids.append(core_out)
core_out = self.drop(core_out)
new_mems = self._update_mems(hids, mems, mlen, qlen)
return core_out, new_mems
def forward(self, data, target, *mems):
# nn.DataParallel does not allow size(0) tensors to be broadcasted.
# So, have to initialize size(0) mems inside the model forward.
# Moreover, have to return new_mems to allow nn.DataParallel to piece
# them together.
if not mems: mems = self.init_mems()
tgt_len = target.size(0)
hidden, new_mems = self._forward(data, mems=mems)
pred_hid = hidden[-tgt_len:]
if self.sample_softmax > 0 and self.training:
assert self.tie_weight
logit = sample_logits(self.word_emb,
self.out_layer.bias, target, pred_hid, self.sampler)
loss = -F.log_softmax(logit, -1)[:, :, 0]
else:
loss = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target.view(-1))
loss = loss.view(tgt_len, -1)
if new_mems is None:
return [loss]
else:
return [loss] + new_mems
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='unit test')
parser.add_argument('--n_layer', type=int, default=3, help='')
parser.add_argument('--n_rel_layer', type=int, default=4, help='')
parser.add_argument('--n_head', type=int, default=20, help='')
parser.add_argument('--d_head', type=int, default=10, help='')
parser.add_argument('--d_model', type=int, default=200, help='')
parser.add_argument('--d_embed', type=int, default=200, help='')
parser.add_argument('--d_inner', type=int, default=200, help='')
parser.add_argument('--dropout', type=float, default=0.0, help='')
parser.add_argument('--cuda', action='store_true', help='')
parser.add_argument('--seed', type=int, default=1111, help='')
parser.add_argument('--multi_gpu', action='store_true', help='')
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
B = 8
tgt_len, mem_len, ext_len = 12, 12, 0
data_len = tgt_len * 20
args.n_token = 10000
import data_utils
data = torch.LongTensor(data_len*B).random_(0, args.n_token).to(device)
diter = data_utils.LMOrderedIterator(data, B, tgt_len, device=device, ext_len=ext_len)
cutoffs = [args.n_token // 2]
tie_projs = [False] + [True] * len(cutoffs)
model = MemTransformerLM(args.n_token, args.n_layer, args.n_head,
args.d_model, args.d_head, args.d_inner, args.dropout,
dropatt=args.dropout, tie_weight=True,
d_embed=200, div_val=1,
tie_projs=tie_projs, pre_lnorm=True,
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
cutoffs=cutoffs, attn_type=0).to(device)
print(sum(p.numel() for p in model.parameters()))
mems = tuple()
for idx, (inp, tgt, seqlen) in enumerate(diter):
print('batch {}'.format(idx))
out = model(inp, tgt, *mems)
mems = out[1:]
if idx == 2:
break