forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstandard_runner_test.py
102 lines (73 loc) · 3.01 KB
/
standard_runner_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2020 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for orbit.standard_runner."""
from orbit import standard_runner
from orbit import utils
import tensorflow as tf
def dataset_fn(input_context=None):
del input_context
def dummy_data(_):
return tf.zeros((1, 1), dtype=tf.float32)
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
class TestTrainer(standard_runner.StandardTrainer):
"""A StandardTrainer subclass for tests."""
def __init__(self, options=None):
self.strategy = tf.distribute.get_strategy()
self.global_step = utils.create_global_step()
distribute = self.strategy.experimental_distribute_datasets_from_function
dataset = distribute(dataset_fn)
super().__init__(train_dataset=dataset, options=options)
def train_loop_begin(self):
self.global_step.assign(0)
def train_step(self, iterator):
def replica_step(_):
self.global_step.assign_add(1)
self.strategy.run(replica_step, args=(next(iterator),))
def train_loop_end(self):
return self.global_step.numpy()
class TestEvaluator(standard_runner.StandardEvaluator):
"""A StandardEvaluator subclass for tests."""
def __init__(self, options=None):
self.strategy = tf.distribute.get_strategy()
self.global_step = utils.create_global_step()
distribute = self.strategy.experimental_distribute_datasets_from_function
dataset = distribute(dataset_fn)
super().__init__(eval_dataset=dataset, options=options)
def eval_begin(self):
self.global_step.assign(0)
def eval_step(self, iterator):
def replica_step(_):
self.global_step.assign_add(1)
self.strategy.run(replica_step, args=(next(iterator),))
def eval_end(self):
return self.global_step.numpy()
class StandardRunnerTest(tf.test.TestCase):
def test_default_trainer(self):
trainer = TestTrainer()
self.assertEqual(trainer.train(tf.constant(10)), 10)
def test_trainer_with_tpu_summary_optimization(self):
options = standard_runner.StandardTrainerOptions(
use_tpu_summary_optimization=True)
trainer = TestTrainer(options)
self.assertEqual(trainer.train(tf.constant(10)), 10)
def test_default_evaluator(self):
evaluator = TestEvaluator()
self.assertEqual(evaluator.evaluate(tf.constant(10)), 10)
if __name__ == '__main__':
tf.test.main()