forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstandard_runner.py
294 lines (238 loc) · 10.7 KB
/
standard_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright 2020 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""An abstraction that users can easily handle their custom training loops."""
import abc
from typing import Any, Dict, Optional, Text
import dataclasses
from orbit import runner
from orbit import utils
import tensorflow as tf
@dataclasses.dataclass(frozen=True)
class StandardTrainerOptions:
"""Advanced options for `orbit.StandardTrainer`.
Attributes:
use_tf_while_loop: A boolean indicating whether to run the training loop
using a `tf.while_loop`. If `True`, `use_tf_function` must also be `True`.
use_tf_function: A boolean indicating whether to apply `tf.function` to the
training loop. This will only affect the body of the loop (involving
`train_step`); `train_loop_begin` and `train_loop_end` will always be run
in eager mode.
use_tpu_summary_optimization: A boolean indicating whether to enable a
performance optimization for summaries in TPUs. Writing summaries
conditionally with outside compilation on TPUs can be extremely slow. If
`True`, this optimization creates two `tf.function`s with two XLA programs
(one with summary calls, and one without). The program with summaries runs
only for one step when summaries should be recorded.
"""
use_tf_while_loop: bool = True
use_tf_function: bool = True
use_tpu_summary_optimization: bool = False
class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta):
"""Implements the standard functionality of AbstractTrainer APIs."""
def __init__(self, train_dataset, options: StandardTrainerOptions = None):
"""Construct a `StandardTrainer` object.
Args:
train_dataset: A tf.nest-compatible structure of tf.data.Dataset or
DistributedDataset.
options: An `orbit.StandardTrainerOptions` instance.
"""
options = options or StandardTrainerOptions()
if options.use_tf_while_loop and not options.use_tf_function:
raise ValueError("`use_tf_while_loop=True` and `use_tf_function=False` "
"is not supported")
if options.use_tpu_summary_optimization and not options.use_tf_while_loop:
raise ValueError("`use_tpu_summary_optimization=True` and "
"`use_tf_while_loop=False` is not supported")
self._use_tf_while_loop = options.use_tf_while_loop
self._use_tf_function = options.use_tf_function
self._use_tpu_summary_optimization = options.use_tpu_summary_optimization
self._train_dataset = train_dataset
self._train_iter = None
self._train_loop_fn = None
def train(self,
num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
"""See base class."""
self.train_loop_begin()
if self._train_iter is None:
self._train_iter = tf.nest.map_structure(iter, self.train_dataset)
if self._train_loop_fn is None:
train_fn = self.train_step
if self._use_tf_while_loop:
self._train_loop_fn = utils.create_tf_while_loop_fn(train_fn)
if self._use_tpu_summary_optimization:
self._train_loop_fn = utils.train_function_with_summaries(
self._train_loop_fn)
else:
self._train_loop_fn = tf.function(self._train_loop_fn)
else:
if self._use_tf_function:
train_fn = tf.function(train_fn)
self._train_loop_fn = utils.create_loop_fn(train_fn)
self._train_loop_fn(self._train_iter, num_steps)
return self.train_loop_end()
def train_loop_begin(self):
"""Called once at the beginning of the training loop.
This method is called before dataset iterators creation.
This is a good place to reset metrics that accumulate values over multiple
steps of training.
"""
pass
@abc.abstractmethod
def train_step(self, iterator):
"""Implements one step of training.
What a "step" consists of is up to the implementer. If using distribution
strategies, the call to this method should take place in the "cross-replica
context" for generality, to allow e.g. multiple iterator dequeues and calls
to `strategy.run`.
Note that if `use_tf_function=True`, all the code inside `train_step` should
be tf.function compatible, as they will be traced with tf.function. This
means you cannot put arbitrary python code in this function. If users have
any numpy operations, they should be put in `train_loop_begin` or
`train_loop_end` functions.
Args:
iterator: A tf.nest-compatible structure of tf.data Iterator or
DistributedIterator.
"""
pass
def train_loop_end(self) -> Optional[Dict[Text, tf.Tensor]]:
"""Called at the end of the training loop.
This is a good place to get metric results. The value returned from this
function will be returned as-is from the train() method.
Returns:
The function may return a dictionary of `Tensors`, which will be
written to logs and as TensorBoard summaries. It can also be a
nested dictionary, yielding a hierarchy of summary directories.
"""
pass
@property
def train_dataset(self):
"""Returns the train_dataset instance."""
return self._train_dataset
@train_dataset.setter
def train_dataset(self, train_dataset):
"""Set a new train dataset and replace with the existing one.
Any unfinished work in the previous dataset will be discarded.
Args:
train_dataset: A tf.nest-compatible structure of tf.data.Dataset or
DistributedDataset.
"""
self._train_dataset = train_dataset
self._train_iter = None
@dataclasses.dataclass(frozen=True)
class StandardEvaluatorOptions:
"""Advanced options for the `orbit.StandardEvaluator`.
Attributes:
use_tf_function: A boolean indicating whether to apply `tf.function` to the
training loop. This will only affect the body of the loop (involving
`train_step`); `train_loop_begin` and `train_loop_end` will always be run
in eager mode.
"""
use_tf_function: bool = True
class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta):
"""Implements the standard functionality of AbstractEvaluator APIs."""
def __init__(self, eval_dataset, options: StandardEvaluatorOptions = None):
"""Construct a `StandardEvaluator` object.
Args:
eval_dataset: A tf.nest-compatible structure of tf.data.Dataset or
DistributedDataset.
options: An `orbit.StandardEvaluatorOptions` instance.
"""
options = options or StandardEvaluatorOptions()
self._eval_use_tf_function = options.use_tf_function
self._eval_dataset = eval_dataset
self._eval_loop_fn = None
def evaluate(
self, num_steps: Optional[tf.Tensor]) -> Optional[Dict[Text, tf.Tensor]]:
"""See base class."""
outputs = self.eval_begin() # pylint: disable=assignment-from-no-return
eval_iter = tf.nest.map_structure(iter, self._eval_dataset)
if self._eval_loop_fn is None:
eval_fn = self.eval_step
if self._eval_use_tf_function:
eval_fn = tf.function(eval_fn)
self._eval_loop_fn = utils.create_loop_fn(eval_fn)
outputs = self._eval_loop_fn(
eval_iter, num_steps, state=outputs, reduce_fn=self.eval_reduce)
if outputs is None:
return self.eval_end()
else:
return self.eval_end(outputs)
def eval_begin(self) -> Any:
"""Called once at the beginning of the evaluation.
This method is called before dataset iterators creation.
This is a good place to reset metrics that accumulate values over the entire
evaluation.
Returns:
An output which is passed as `state` argument into `eval_reduce` function.
"""
pass
@abc.abstractmethod
def eval_step(self, iterator) -> Any:
"""Implements one step of evaluation.
What a "step" consists of is up to the implementer. If using distribution
strategies, the call to this method should take place in the "cross-replica
context" for generality, to allow e.g. multiple iterator dequeues and calls
to `strategy.run`.
Note that if `use_tf_function=True`, all the code inside `eval_step` should
be tf.function compatible, as they will be traced with tf.function. This
means you cannot put arbitrary python code in this function. If users have
any numpy operations, they should be put in `eval_begin`, `eval_end` or
`eval_reduce` functions.
Args:
iterator: A tf.nest-compatible structure of tf.data Iterator or
DistributedIterator.
Returns:
An output which is passed as `step_outputs` argument into `eval_reduce`
function.
"""
pass
def eval_end(self, *args) -> Optional[Dict[Text, tf.Tensor]]:
"""Called at the end of the evaluation.
This is a good place to get metric results. The value returned from this
function will be returned as-is from the evaluate() method.
Args:
*args: the outputs from `eval_reduce` for the last eval step.
Returns:
The function may return a dictionary of `Tensors`, which will be
written to logs and as TensorBoard summaries. It can also be a
nested dictionary, yielding a hierarchy of summary directories.
"""
pass
def eval_reduce(self, state=None, step_outputs=None) -> Any:
"""A function to do the reduction on the evaluation outputs per step.
This is useful for passing states throughout evaluation. E.g. it can be used
to maintain the output losses from all the evaluation steps, and compute the
mean loss in `eval_end` function.
Args:
state: A maintained state throughout the evaluation.
step_outputs: Outputs from the current evaluation step.
Returns:
An output which is passed as `state` argument into `eval_reduce` function
for the next step. After evaluation is finished, the output from last step
will be passed into `eval_end` function.
"""
pass
@property
def eval_dataset(self):
"""Returns the train_datase instance."""
return self._eval_dataset
@eval_dataset.setter
def eval_dataset(self, eval_dataset):
"""Set a new eval dataset and replace with the existing one.
Args:
eval_dataset: A tf.nest-compatible structure of tf.data.Dataset or
DistributedDataset.
"""
self._eval_dataset = eval_dataset