forked from koide3/small_gicp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
02_basic_registration_pcl.cpp
107 lines (85 loc) · 5.24 KB
/
02_basic_registration_pcl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide
// SPDX-License-Identifier: MIT
/// @brief Basic point cloud registration example with PCL interfaces
#include <small_gicp/pcl/pcl_point.hpp>
#include <small_gicp/pcl/pcl_point_traits.hpp>
#include <small_gicp/pcl/pcl_registration.hpp>
#include <small_gicp/util/downsampling_omp.hpp>
#include <small_gicp/benchmark/read_points.hpp>
using namespace small_gicp;
/// @brief Example of using RegistrationPCL that can be used as a drop-in replacement for pcl::GeneralizedIterativeClosestPoint.
void example1(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& raw_target, const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& raw_source) {
// small_gicp::voxelgrid_downsampling can directly operate on pcl::PointCloud.
pcl::PointCloud<pcl::PointXYZ>::Ptr target = voxelgrid_sampling_omp(*raw_target, 0.25);
pcl::PointCloud<pcl::PointXYZ>::Ptr source = voxelgrid_sampling_omp(*raw_source, 0.25);
// RegistrationPCL is derived from pcl::Registration and has mostly the same interface as pcl::GeneralizedIterativeClosestPoint.
RegistrationPCL<pcl::PointXYZ, pcl::PointXYZ> reg;
reg.setNumThreads(4);
reg.setCorrespondenceRandomness(20);
reg.setMaxCorrespondenceDistance(1.0);
reg.setVoxelResolution(1.0);
reg.setRegistrationType("VGICP"); // or "GICP" (default = "GICP")
// Set input point clouds.
reg.setInputTarget(target);
reg.setInputSource(source);
// Align point clouds.
auto aligned = pcl::make_shared<pcl::PointCloud<pcl::PointXYZ>>();
reg.align(*aligned);
std::cout << "--- T_target_source ---" << std::endl << reg.getFinalTransformation() << std::endl;
std::cout << "--- H ---" << std::endl << reg.getFinalHessian() << std::endl;
// Swap source and target and align again.
// This is useful when you want to re-use preprocessed point clouds for successive registrations (e.g., odometry estimation).
reg.swapSourceAndTarget();
reg.align(*aligned);
std::cout << "--- T_target_source ---" << std::endl << reg.getFinalTransformation().inverse() << std::endl;
}
/// @brief Example to directly feed pcl::PointCloud<pcl::PointCovariance> to small_gicp::Registration.
void example2(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& raw_target, const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& raw_source) {
// Downsample points and convert them into pcl::PointCloud<pcl::PointCovariance>.
pcl::PointCloud<pcl::PointCovariance>::Ptr target = voxelgrid_sampling_omp<pcl::PointCloud<pcl::PointXYZ>, pcl::PointCloud<pcl::PointCovariance>>(*raw_target, 0.25);
pcl::PointCloud<pcl::PointCovariance>::Ptr source = voxelgrid_sampling_omp<pcl::PointCloud<pcl::PointXYZ>, pcl::PointCloud<pcl::PointCovariance>>(*raw_source, 0.25);
// Estimate covariances of points.
const int num_threads = 4;
const int num_neighbors = 20;
estimate_covariances_omp(*target, num_neighbors, num_threads);
estimate_covariances_omp(*source, num_neighbors, num_threads);
// Create KdTree for target and source.
auto target_tree = std::make_shared<KdTree<pcl::PointCloud<pcl::PointCovariance>>>(target, KdTreeBuilderOMP(num_threads));
auto source_tree = std::make_shared<KdTree<pcl::PointCloud<pcl::PointCovariance>>>(source, KdTreeBuilderOMP(num_threads));
Registration<GICPFactor, ParallelReductionOMP> registration;
registration.reduction.num_threads = num_threads;
registration.rejector.max_dist_sq = 1.0;
// Align point clouds. Note that the input point clouds are pcl::PointCloud<pcl::PointCovariance>.
auto result = registration.align(*target, *source, *target_tree, Eigen::Isometry3d::Identity());
std::cout << "--- T_target_source ---" << std::endl << result.T_target_source.matrix() << std::endl;
std::cout << "converged:" << result.converged << std::endl;
std::cout << "error:" << result.error << std::endl;
std::cout << "iterations:" << result.iterations << std::endl;
std::cout << "num_inliers:" << result.num_inliers << std::endl;
std::cout << "--- H ---" << std::endl << result.H << std::endl;
std::cout << "--- b ---" << std::endl << result.b.transpose() << std::endl;
// Because this usage exposes all preprocessed data, you can easily re-use them to obtain the best efficiency.
auto result2 = registration.align(*source, *target, *source_tree, Eigen::Isometry3d::Identity());
std::cout << "--- T_target_source ---" << std::endl << result2.T_target_source.inverse().matrix() << std::endl;
}
int main(int argc, char** argv) {
std::vector<Eigen::Vector4f> target_points = read_ply("data/target.ply");
std::vector<Eigen::Vector4f> source_points = read_ply("data/source.ply");
if (target_points.empty() || source_points.empty()) {
std::cerr << "error: failed to read points from data/(target|source).ply" << std::endl;
return 1;
}
const auto convert_to_pcl = [](const std::vector<Eigen::Vector4f>& raw_points) {
auto points = pcl::make_shared<pcl::PointCloud<pcl::PointXYZ>>();
points->resize(raw_points.size());
for (size_t i = 0; i < raw_points.size(); i++) {
points->at(i).getVector4fMap() = raw_points[i];
}
return points;
};
pcl::PointCloud<pcl::PointXYZ>::Ptr raw_target = convert_to_pcl(target_points);
pcl::PointCloud<pcl::PointXYZ>::Ptr raw_source = convert_to_pcl(source_points);
example1(raw_target, raw_source);
example2(raw_target, raw_source);
return 0;
}