forked from BalajiG2000/Code_Dump
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminInGameTheory.cpp
221 lines (190 loc) · 4.21 KB
/
minInGameTheory.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// C++ program to find the next optimal move for
// a player
#include<bits/stdc++.h>
using namespace std;
struct Move
{
int row, col;
};
char player = 'x', opponent = 'o';
// This function returns true if there are moves
// remaining on the board. It returns false if
// there are no moves left to play.
bool isMovesLeft(char board[3][3])
{
for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
if (board[i][j]=='_')
return true;
return false;
}
// This is the evaluation function as discussed
// in the previous article ( http://goo.gl/sJgv68 )
int evaluate(char b[3][3])
{
// Checking for Rows for X or O victory.
for (int row = 0; row<3; row++)
{
if (b[row][0]==b[row][1] &&
b[row][1]==b[row][2])
{
if (b[row][0]==player)
return +10;
else if (b[row][0]==opponent)
return -10;
}
}
// Checking for Columns for X or O victory.
for (int col = 0; col<3; col++)
{
if (b[0][col]==b[1][col] &&
b[1][col]==b[2][col])
{
if (b[0][col]==player)
return +10;
else if (b[0][col]==opponent)
return -10;
}
}
// Checking for Diagonals for X or O victory.
if (b[0][0]==b[1][1] && b[1][1]==b[2][2])
{
if (b[0][0]==player)
return +10;
else if (b[0][0]==opponent)
return -10;
}
if (b[0][2]==b[1][1] && b[1][1]==b[2][0])
{
if (b[0][2]==player)
return +10;
else if (b[0][2]==opponent)
return -10;
}
// Else if none of them have won then return 0
return 0;
}
// This is the minimax function. It considers all
// the possible ways the game can go and returns
// the value of the board
int minimax(char board[3][3], int depth, bool isMax)
{
int score = evaluate(board);
// If Maximizer has won the game return his/her
// evaluated score
if (score == 10)
return score;
// If Minimizer has won the game return his/her
// evaluated score
if (score == -10)
return score;
// If there are no more moves and no winner then
// it is a tie
if (isMovesLeft(board)==false)
return 0;
// If this maximizer's move
if (isMax)
{
int best = -1000;
// Traverse all cells
for (int i = 0; i<3; i++)
{
for (int j = 0; j<3; j++)
{
// Check if cell is empty
if (board[i][j]=='_')
{
// Make the move
board[i][j] = player;
// Call minimax recursively and choose
// the maximum value
best = max( best,
minimax(board, depth+1, !isMax) );
// Undo the move
board[i][j] = '_';
}
}
}
return best;
}
// If this minimizer's move
else
{
int best = 1000;
// Traverse all cells
for (int i = 0; i<3; i++)
{
for (int j = 0; j<3; j++)
{
// Check if cell is empty
if (board[i][j]=='_')
{
// Make the move
board[i][j] = opponent;
// Call minimax recursively and choose
// the minimum value
best = min(best,
minimax(board, depth+1, !isMax));
// Undo the move
board[i][j] = '_';
}
}
}
return best;
}
}
// This will return the best possible move for the player
Move findBestMove(char board[3][3])
{
int bestVal = -1000;
Move bestMove;
bestMove.row = -1;
bestMove.col = -1;
// Traverse all cells, evaluate minimax function for
// all empty cells. And return the cell with optimal
// value.
for (int i = 0; i<3; i++)
{
for (int j = 0; j<3; j++)
{
// Check if cell is empty
if (board[i][j]=='_')
{
// Make the move
board[i][j] = player;
// compute evaluation function for this
// move.
int moveVal = minimax(board, 0, false);
// Undo the move
board[i][j] = '_';
// If the value of the current move is
// more than the best value, then update
// best/
if (moveVal > bestVal)
{
bestMove.row = i;
bestMove.col = j;
bestVal = moveVal;
}
}
}
}
printf("The value of the best Move is : %d\n\n",
bestVal);
return bestMove;
}
// Driver code
int main()
{
char board[3][3] =
{
{ 'x', 'o', 'x' },
{ 'o', 'o', 'x' },
{ '_', '_', '_' }
};
Move bestMove = findBestMove(board);
printf("The Optimal Move is :\n");
printf("ROW: %d COL: %d\n\n", bestMove.row,
bestMove.col );
return 0;
}