-
Notifications
You must be signed in to change notification settings - Fork 1
/
mpm99.py
133 lines (122 loc) · 5.34 KB
/
mpm99.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import taichi as ti
ti.init(arch=ti.gpu) # Try to run on GPU
quality = 1 # Use a larger value for higher-res simulations
n_particles, n_grid = 9000 * quality**2, 128 * quality
dx, inv_dx = 1 / n_grid, float(n_grid)
dt = 1e-4 / quality
p_vol, p_rho = (dx * 0.5)**2, 1
p_mass = p_vol * p_rho
E, nu = 0.1e4, 0.2 # Young's modulus and Poisson's ratio
mu_0, lambda_0 = E / (2 * (1 + nu)), E * nu / (
(1 + nu) * (1 - 2 * nu)) # Lame parameters
x = ti.Vector.field(2, dtype=float, shape=n_particles) # position
v = ti.Vector.field(2, dtype=float, shape=n_particles) # velocity
C = ti.Matrix.field(2, 2, dtype=float,
shape=n_particles) # affine velocity field
F = ti.Matrix.field(2, 2, dtype=float,
shape=n_particles) # deformation gradient
material = ti.field(dtype=int, shape=n_particles) # material id
Jp = ti.field(dtype=float, shape=n_particles) # plastic deformation
grid_v = ti.Vector.field(2, dtype=float,
shape=(n_grid, n_grid)) # grid node momentum/velocity
grid_m = ti.field(dtype=float, shape=(n_grid, n_grid)) # grid node mass
@ti.kernel
def substep():
for i, j in grid_m:
grid_v[i, j] = [0, 0]
grid_m[i, j] = 0
for p in x: # Particle state update and scatter to grid (P2G)
base = (x[p] * inv_dx - 0.5).cast(int)
fx = x[p] * inv_dx - base.cast(float)
# Quadratic kernels [http://mpm.graphics Eqn. 123, with x=fx, fx-1,fx-2]
w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
# F[p]: deformation gradient update
F[p] = (ti.Matrix.identity(float, 2) + dt * C[p]) @ F[p]
# h: Hardening coefficient: snow gets harder when compressed
h = ti.exp(10 * (1.0 - Jp[p]))
if material[p] == 1: # jelly, make it softer
h = 0.3
mu, la = mu_0 * h, lambda_0 * h
if material[p] == 0: # liquid
mu = 0.0
U, sig, V = ti.svd(F[p])
J = 1.0
for d in ti.static(range(2)):
new_sig = sig[d, d]
if material[p] == 2: # Snow
new_sig = ti.min(ti.max(sig[d, d], 1 - 2.5e-2),
1 + 4.5e-3) # Plasticity
Jp[p] *= sig[d, d] / new_sig
sig[d, d] = new_sig
J *= new_sig
if material[p] == 0:
# Reset deformation gradient to avoid numerical instability
F[p] = ti.Matrix.identity(float, 2) * ti.sqrt(J)
elif material[p] == 2:
# Reconstruct elastic deformation gradient after plasticity
F[p] = U @ sig @ V.transpose()
stress = 2 * mu * (F[p] - U @ V.transpose()) @ F[p].transpose(
) + ti.Matrix.identity(float, 2) * la * J * (J - 1)
stress = (-dt * p_vol * 4 * inv_dx * inv_dx) * stress
affine = stress + p_mass * C[p]
# Loop over 3x3 grid node neighborhood
for i, j in ti.static(ti.ndrange(3, 3)):
offset = ti.Vector([i, j])
dpos = (offset.cast(float) - fx) * dx
weight = w[i][0] * w[j][1]
grid_v[base + offset] += weight * (p_mass * v[p] + affine @ dpos)
grid_m[base + offset] += weight * p_mass
for i, j in grid_m:
if grid_m[i, j] > 0: # No need for epsilon here
grid_v[i, j] = \
(1 / grid_m[i, j]) * grid_v[i, j] # Momentum to velocity
grid_v[i, j][1] -= dt * 50 # gravity
if i < 3 and grid_v[i, j][0] < 0:
grid_v[i, j][0] = 0 # Boundary conditions
if i > n_grid - 3 and grid_v[i, j][0] > 0:
grid_v[i, j][0] = 0
if j < 3 and grid_v[i, j][1] < 0:
grid_v[i, j][1] = 0
if j > n_grid - 3 and grid_v[i, j][1] > 0:
grid_v[i, j][1] = 0
for p in x: # grid to particle (G2P)
base = (x[p] * inv_dx - 0.5).cast(int)
fx = x[p] * inv_dx - base.cast(float)
w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2]
new_v = ti.Vector.zero(float, 2)
new_C = ti.Matrix.zero(float, 2, 2)
for i, j in ti.static(ti.ndrange(3, 3)):
# loop over 3x3 grid node neighborhood
dpos = ti.Vector([i, j]).cast(float) - fx
g_v = grid_v[base + ti.Vector([i, j])]
weight = w[i][0] * w[j][1]
new_v += weight * g_v
new_C += 4 * inv_dx * weight * g_v.outer_product(dpos)
v[p], C[p] = new_v, new_C
x[p] += dt * v[p] # advection
group_size = n_particles // 3
@ti.kernel
def initialize():
for i in range(n_particles):
x[i] = [
ti.random() * 0.2 + 0.3 + 0.10 * (i // group_size),
ti.random() * 0.2 + 0.05 + 0.32 * (i // group_size)
]
material[i] = i // group_size # 0: fluid 1: jelly 2: snow
v[i] = ti.Matrix([0, 0])
F[i] = ti.Matrix([[1, 0], [0, 1]])
Jp[i] = 1
def main():
initialize()
gui = ti.GUI("Taichi MLS-MPM-99", res=512, background_color=0x112F41)
while not gui.get_event(ti.GUI.ESCAPE, ti.GUI.EXIT):
for s in range(int(2e-3 // dt)):
substep()
gui.circles(x.to_numpy(),
radius=1.5,
palette=[0x068587, 0xED553B, 0xEEEEF0],
palette_indices=material)
# Change to gui.show(f'{frame:06d}.png') to write images to disk
gui.show()
if __name__ == '__main__':
main()