forked from amaas/rnn-speech-denoising
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_aurora.m
251 lines (223 loc) · 8.44 KB
/
load_aurora.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
function varargout = load_aurora(featBase, trainingSet, subdir, M, eI, mode)
% featBase: Location of the features (ex: aurora2/features/)
% trainingSet: 'Mfc08_multiTR', 'Mfc08_setaTR', etc
% subdir: cell array ofsubdirectory of the features (ex: {N1_SNR5/})
% M: Number of sample files to use. value < 0 loads all
% eI.winSize: Size of window
% eI.seqLen: unique lengths (in ascending order)
% files are chopped by these lengths. (ex: [1, 10, 100])
% eI.useCache: If true, read + save to aurora_data.mat
% !!!WARNING!!!: If you change this function, delete
% aurora_data.mat.
% eI.targetWhiten: Specify the path to the whitening data.
% data_ag: noisy data. cell array of different training lengths.
% target_ag: clean data. cell array of different training lengths.
% AMAAS edit. Applying CMN to input and output so whitening file not used
% mode:
% 0: Training (noisy data and clean data)
% 1: Testing (just noisy data)
% 2: Error testing (noisy data and clean data, both loaded without chunking)
if nargin <= 5,
mode = 0;
end
%% Handle caching. Dont cache for testing.
% AMAAS caching makes me nervous
% if ~mode && isfield(eI, 'useCache') && eI.useCache
% try
% load aurora_data.mat;
% if M == cache_M && ...
% isequal(eI, cache_eI) && ...
% isequal(featBase, cache_featBase) && ...
% isequal(subdir, cache_subdir),
% data_ag = cache_data_ag;
% target_ag = cache_target_ag;
% end
% catch
% end
% if exist('data_ag', 'var') && exist('target_ag', 'var'),
% return;
% end
% end;
%% Testing code
input_fnames = {};
unique_lengths = [];
%% Get all file names
multi = {};
if length(subdir) > 0
for i=1:length(subdir),
multi = [multi; getAllFiles([featBase trainingSet '/' subdir{i}])];
end
else
multi = getAllFiles([featBase trainingSet]);
end;
%% Get whitening data.
% whitening not being used at all
% try
% load(eI.targetWhiten);
% catch
% % AMAAS this is dangerous as it could result in people using different
% % whitening matrices. Better to compute them once and all share
% % make_aurora_whitening;
% %load(eI.targetWhiten);
% disp('whitening matrix not found');
% end
%% Loop through every file.
if M < 0
M = length(multi);
end
%% Set up. During testing, dont know the lengths so cant pre-allocate
if mode,
data_ag = {};
target_ag = {}; % returns empty targets
else,
seqLenSizes = zeros(1,length(eI.seqLen));
for i=1:M
[pathstr, name, ext] = fileparts(multi{i});
[multi_data, htkCode] = htkread(multi{i});
[T, nfeat] = size(multi_data);
remainder = T;
for i=length(eI.seqLen):-1:1
num = floor(remainder/eI.seqLen(i));
remainder = mod(remainder,eI.seqLen(i));
seqLenSizes(i) = seqLenSizes(i)+num;
end
end
data_ag = cell(1,length(eI.seqLen));
target_ag = cell(1,length(eI.seqLen));
for i=length(eI.seqLen):-1:1
data_ag{i} = zeros(eI.inputDim*eI.seqLen(i),seqLenSizes(i));
target_ag{i} = zeros(nfeat*eI.seqLen(i),seqLenSizes(i));
end
end
seqLenPositions = ones(1,length(eI.seqLen));
for i=1:M,
%% Load multi data.
[pathstr, name, ext] = fileparts(multi{i});
[multi_data, htkCode] = htkread(multi{i});
multi_data = multi_data';
[nFeat,T] = size(multi_data);
assert(nFeat == 14);
%% apply CMVN to input
cur_mean = mean(multi_data, 2);
cur_std = std(multi_data, 0, 2);
multi_data = bsxfun(@minus, multi_data, cur_mean);
multi_data = bsxfun(@rdivide, multi_data, cur_std);
%% estimate noise of the input signal
noise_ind = 1:min(10,size(multi_data,2));
noise_est = mean(multi_data(:,noise_ind),2);
%% GLobal X/Y normalization
% multi_data = bsxfun(@minus, multi_data, w_mean);
% multi_data = bsxfun(@rdivide, multi_data, w_std);
%% Load clean data if not testing
if mode ~= 1
[clean_data dummy] = htkread([featBase 'Mfc08_cleanTR/' name ext]);
clean_data = clean_data';
assert(length(multi_data) == length(clean_data));
%% apply CMVN to targets
cur_mean = mean(clean_data, 2);
cur_std = std(clean_data, 0, 2);
clean_data = bsxfun(@minus, clean_data, cur_mean);
clean_data = bsxfun(@rdivide, clean_data, cur_std);
%% GLobal X/Y normalization
% clean_data = bsxfun(@minus, clean_data, w_mean);
% clean_data = bsxfun(@rdivide, clean_data, w_std);
end
%% zero pad
if eI.winSize > 1
% winSize must be odd for padding to work
if mod(eI.winSize,2) ~= 1
fprintf(1,'error! winSize must be odd!');
return
end;
% pad with repeated frames on both sides so im2col data
% aligns with output data
nP = (eI.winSize-1)/2;
multi_data = [repmat(multi_data(:,1),1,nP), multi_data, ...
repmat(multi_data(:,end),1,nP)];
end;
%% im2col puts winSize frames in each column
multi_data_slid = im2col(multi_data,[nFeat, eI.winSize],'sliding');
% concatenate noise estimate to each input
multi_data_slid = [multi_data_slid; repmat(noise_est,1,T)];
if mode == 1, % Testing
c = find(unique_lengths == T);
if isempty(c)
% add new unique length if necessary
data_ag = [data_ag, multi_data_slid(:)];
unique_lengths = [unique_lengths, T];
input_fnames = [input_fnames; {multi{i}}];
else
data_ag{c} = [data_ag{c}, multi_data_slid(:)];
input_fnames{c} = [input_fnames{c}; {multi{i}}];
end;
elseif mode == 2, % Error analysis.
c = find(unique_lengths == T);
if isempty(c)
% add new unique length if necessary
data_ag = [data_ag, multi_data_slid(:)];
target_ag = [target_ag, clean_data(:)];
unique_lengths = [unique_lengths, T];
else
data_ag{c} = [data_ag{c}, multi_data_slid(:)];
target_ag{c} = [target_ag{c}, clean_data(:) ];
end;
else,
%% put it in the correct cell area.
while T > 0
% assumes length in ascending order.
% Finds longest length shorter than utterance
c = find(eI.seqLen <= T, 1,'last');
binLen = eI.seqLen(c);
assert(~isempty(c),'could not find length bin for %d',T);
% copy data for this chunk
data_ag{c}(:,seqLenPositions(c))=reshape(multi_data_slid(:,1:binLen),[],1);
target_ag{c}(:,seqLenPositions(c))=reshape(clean_data(:,1:binLen),[],1);
seqLenPositions(c) = seqLenPositions(c)+1;
% trim for next iteration
T = T-binLen;
if T > 0
multi_data_slid = multi_data_slid(:,(binLen+1):end);
clean_data = clean_data(:,(binLen+1):end);
end;
end;
end;
end;
% if isfield(eI, 'useCache') && eI.useCache
% cache_data_ag = data_ag;
% cache_target_ag = target_ag;
% cache_featBase = featBase;
% cache_subdir = subdir;
% cache_M = M;
% cache_eI = eI;
% save aurora_data.mat cache_data_ag cache_target_ag cache_featBase cache_subdir cache_M cache_eI;
% end
theoutputs = {data_ag, target_ag, input_fnames};
varargout = theoutputs(1:nargout);
return;
%% Unit test 1
eI.seqLen = [1 50 100];
eI.winSize = 3;
baseDir = 'C:\Users\Tyler-Sager\Documents\MATLAB\DrDraeLoader\features_backup\';
[data_ag, target_ag] = load_aurora(baseDir, 'Mfc08_multiTR', {'N1_SNR5'}, -1, eI); % Notice ascending order
% see if the next frame's window has the current frame in it.
data_sliding = reshape(data_ag{3}, eI.winSize*14, 100*size(data_ag{3},2));
imagesc(data_sliding(15:28,1:end-1) - data_sliding(1:14,2:end));
%% Unit test 2: Requires manually looking at output.
eI.seqLen = [1 50 100];
eI.winSize = 3;
eI.useCache = 1;
baseDir = '/afs/cs.stanford.edu/u/amaas/scratch/aurora2/features/';
[data_ag, target_ag] = load_aurora(baseDir, 'Mfc08_multiTR', {'N1_SNR10'}, 10, eI);
fprintf('Bust the cache -- different subdir. Expecting output.');
[data_ag, target_ag] = load_aurora(baseDir, 'Mfc08_multiTR', {'N1_SNR5'}, 10, eI);
fprintf('Bust the cache -- different M. Expecting output.');
[data_ag, target_ag] = load_aurora(baseDir, 'Mfc08_multiTR', {'N1_SNR5'}, 11, eI);
fprintf('Cache hit. NO OUTPUT BELOW THIS LINE!!!!\n');
[data_ag, target_ag] = load_aurora(baseDir, {'N1_SNR5'}, 11, eI);
%% Unit test 3: Testing data
eI.seqLen = [1 50 100];
eI.winSize = 3;
eI.useCache = 1;
baseDir = '/afs/cs.stanford.edu/u/amaas/scratch/aurora2/features/';
[data_ag, target_ag, fnames] = load_aurora(baseDir, 'Mfc08_multiTR', {'N1_SNR10'}, 10, eI, 1);
end