forked from amaas/rnn-speech-denoising
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrdae_obj.m
215 lines (202 loc) · 8.14 KB
/
drdae_obj.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
function [ cost, grad, numTotal, pred_cell ] = drdae_obj( theta, eI, data_cell, targets_cell, fprop_only, pred_out)
%PRNN_OBJ MinFunc style objective for Deep Recurrent Denoising Autoencoder
% theta is the full parameter vector
% eI contains experiment / network architecture
% data_cell is a cell array of matrices. Each a distinct length is a cell
% entry. Each matrix has a time series example in each column
% targets_cell is parallel to data, but contains the labels for each time
% fprop_only is a flag that only computes the cost, no gradient
% eI.recurrentOnly is a flag for computing gradients for only the
% recurrent layer. All other gradients set to 0
% numTotal is total number of frames evaluated
% pred_out is a binary flag for whether pred_cell is populated
% pred_cell only filled properly when utterances one per cell
%% Debug: Turns this into an identity-function for debugging rest of system
if isfield(eI, 'objReturnsIdentity') && eI.objReturnsIdentity
cost = 0; grad = 0; numTotal = 0;
for l = 1:numel(data_cell)
numUtterances = size(data_cell{l}, 2);
original_vector = reshape(data_cell{l}, eI.winSize*eI.featDim, []);
midPnt = ceil(eI.winSize/2);
original_vector = original_vector((midPnt-1)*14+1 : midPnt*14, :);
pred_cell{l} = reshape(original_vector, [], numUtterances);
end
return;
end
%if isempty(return_activation),
return_activation = 0;
%end
%% Load data from globals if not passed in (happens when run on RPC slave)
global g_data_cell;
global g_targets_cell;
isSlave = false;
if isempty(data_cell)
data_cell = g_data_cell;
targets_cell = g_targets_cell;
isSlave = true;
end;
pred_cell = cell(1,numel(data_cell));
act_cell = cell(1,numel(data_cell));
%% default short circuits to false
if ~isfield(eI, 'shortCircuit')
eI.shortCircuit = 0;
end;
%% default dropout to false
if ~isfield(eI, 'dropout')
eI.dropout = 0;
end;
%% setup weights and accumulators
[stack, W_t] = rnn_params2stack(theta, eI);
cost = 0; numTotal = 0;
outputDim = eI.layerSizes(end);
%% setup structures to aggregate gradients
stackGrad = cell(1,numel(eI.layerSizes));
W_t_grad = zeros(size(W_t));
for l = 1:numel(eI.layerSizes)
stackGrad{l}.W = zeros(size(stack{l}.W));
stackGrad{l}.b = zeros(size(stack{l}.b));
end
if eI.shortCircuit
stackGrad{end}.W_ss = zeros(size(stack{end}.W_ss));
end;
%% check options
if ~exist('fprop_only','var')
fprop_only = false;
end;
if ~exist('pred_out','var')
pred_out = false;
end;
% DROPOUT: vector of length of hidden layers with 0 or 1
% (to drop or keep activation unit) with prob=0.5
hActToDrop = cell(numel(eI.layerSizes),1);
for i=1:numel(eI.layerSizes)-1
if eI.dropout
hActToDrop{i} = round(rand(eI.layerSizes(i),1));
else
hActToDrop{i} = ones(eI.layerSizes(i),1);
end
end
%% loop over each distinct length
for c = 1:numel(data_cell)
data = data_cell{c};
targets = {};
if ~isempty(targets_cell), targets = targets_cell{c}; end;
uttPred = [];
T =size(data,1) / eI.inputDim;
% store hidden unit activations at each time instant
hAct = cell(numel(eI.layerSizes-1), T);
for t = 1:T
%% forward prop all hidden layers
for l = 1:numel(eI.layerSizes)-1
if l == 1
hAct{1,t} = stack{1}.W * data((t-1)*eI.inputDim+1:t*eI.inputDim, :);
else
hAct{l,t} = stack{l}.W * hAct{l-1,t};
end;
hAct{l,t} = bsxfun(@plus, hAct{l,t}, stack{l}.b);
% temporal recurrence. limited to single layer for now
if l == eI.temporalLayer && t > 1
hAct{l,t} = hAct{l,t} + W_t * hAct{l,t-1};
end;
% nonlinearity
if strcmpi(eI.activationFn,'tanh')
hAct{l,t} = tanh(hAct{l,t});
elseif strcmpi(eI.activationFn,'logistic')
hAct{l,t} = 1./(1+exp(-hAct{l,t}));
else
error('unrecognized activation function: %s',eI.activationFn);
end;
%dropout (hActToDrop will be all ones if no dropout specified)
hAct{1,t} = bsxfun(@times, hAct{1,t}, hActToDrop{l});
end;
% forward prop top layer not done here to avoid caching it
end;
%% compute cost and backprop through time
if eI.temporalLayer
delta_t = zeros(eI.layerSizes(eI.temporalLayer),size(data,2));
end;
for t = T:-1:1
l = numel(eI.layerSizes);
%% forward prop output layer for this timestep
curPred = bsxfun(@plus, stack{l}.W * hAct{l-1,t}, stack{l}.b);
% add short circuit to regression prediction if model has it
if eI.shortCircuit
curPred = curPred + stack{end}.W_ss ...
* data((t-1)*eI.inputDim+1:t*eI.inputDim, :);
end;
if pred_out, uttPred = [curPred; uttPred]; end;
% skip loss computation if no targets given
if isempty(targets), continue; end;
curTargets = targets((t-1)*outputDim+1:t*outputDim, :);
%% compute cost. Squared L2 loss
delta = curPred - curTargets;
cost = cost + 0.5 * sum(delta(:).^2);
if fprop_only, continue; end;
%% regression layer gradient and delta
stackGrad{l}.W = stackGrad{l}.W + delta * hAct{l-1,t}';
stackGrad{l}.b = stackGrad{l}.b + sum(delta,2);
% short circuit layer
if eI.shortCircuit
stackGrad{end}.W_ss = stackGrad{end}.W_ss + delta ...
* data((t-1)*eI.inputDim+1:t*eI.inputDim, :)';
end;
delta = stack{l}.W' * delta;
%% backprop through hidden layers
for l = numel(eI.layerSizes)-1:-1:1
% aggregate temporal delta term if this is the recurrent layer
if l == eI.temporalLayer
delta = delta + delta_t;
end;
% push delta through activation function for this layer
% tanh unit choice assumed
if strcmpi(eI.activationFn,'tanh')
delta = delta .* (1 - hAct{l,t}.^2);
elseif strcmpi(eI.activationFn,'logistic')
delta = delta .* hAct{l,t} .* (1 - hAct{l,t});
else
error('unrecognized activation function: %s',eI.activationFn);
end;
% gradient of bottom-up connection for this layer
if l > 1
stackGrad{l}.W = stackGrad{l}.W + delta * hAct{l-1,t}';
else
stackGrad{l}.W = stackGrad{l}.W + delta * data((t-1)*eI.inputDim+1:t*eI.inputDim, :)';
end;
% gradient for bias
stackGrad{l}.b = stackGrad{l}.b + sum(delta,2);
% compute derivative and delta for temporal connections
if l == eI.temporalLayer && t > 1
W_t_grad = W_t_grad + delta * hAct{l,t-1}';
% push delta through temporal weights
delta_t = W_t' * delta;
end;
% push delta through bottom-up weights
if l > 1
delta = stack{l}.W' * delta;
end;
end
% reduces avg memory usage but doesn't reduce peak
%hAct(:,t) = [];
end
pred_cell{c} = uttPred;
% Return the activations for this utterance.
if return_activation,
act_cell{c} = cell2mat(hAct);
end
% keep track of how many examples seen in total
numTotal = numTotal + T * size(targets,2);
end
%% stack gradients into single vector and compute weight cost
wCost = numTotal * eI.lambda * sum(theta.^2);
grad = rnn_stack2params(stackGrad, eI, W_t_grad, true);
grad = grad + 2 * numTotal * eI.lambda * theta;
avCost = cost/numTotal;
avWCost = wCost/numTotal;
cost = cost + wCost;
%% print output
if ~isSlave && ~isempty(targets_cell)
fprintf('loss: %f wCost: %f \t',avCost, avWCost);
fprintf('wNorm: %f rNorm: %f oNorm: %f\n',sum(stack{1}.W(:).^2),...
sum(W_t(:).^2), sum(stack{end}.W(:).^2));
% plot(theta,'kx');drawnow;
end;