-
Notifications
You must be signed in to change notification settings - Fork 2
/
Offset_Curves_along_a_parametric_curve.py
414 lines (308 loc) · 8.2 KB
/
Offset_Curves_along_a_parametric_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# Offset Curves along a parametric curve
# - using Matplotlib, NumPy and scikit-vectors
# Copyright (c) 2019 Tor Olav Kristensen, http://subcube.com
#
# https://github.com/t-o-k/scikit-vectors
#
# Use of this source code is governed by a BSD-license that can be found in the LICENSE file.
url = 'https://github.com/t-o-k/scikit-vectors_examples/'
# This example has been tested with NumPy v1.13.3 and Matplotlib v2.1.1.
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
import numpy as np
from skvectors import create_class_Cartesian_2D_Vector
# Size and resolution for Matplotlib figures
figure_size = (8, 8)
figure_dpi = 100
# Trefoil knot in 2D
def f_x(t):
r = np.sqrt(2 + np.sqrt(3))
return r * np.cos(2 * t - 3 / 2 * np.pi) - np.sin(t)
def f_y(t):
r = np.sqrt(2 + np.sqrt(3))
return r * np.sin(2 * t - 3 / 2 * np.pi) - np.cos(t)
no_of_points_along_curve = 3 * 2**8 + 1
# Necessary NumPy functions
np_functions = \
{
'not': np.logical_not,
'and': np.logical_and,
'or': np.logical_or,
'all': np.all,
'any': np.any,
'min': np.minimum,
'max': np.maximum,
'abs': np.absolute,
'trunc': np.trunc,
'ceil': np.ceil,
'copysign': np.copysign,
'log10': np.log10,
'cos': np.cos,
'sin': np.sin,
'atan2': np.arctan2,
'pi': np.pi
}
# Create a vector class that can hold all the points along the curve
NP2 = \
create_class_Cartesian_2D_Vector(
name = 'NP2',
component_names = 'xy',
brackets = '<>',
sep = ', ',
cnull = np.zeros(no_of_points_along_curve),
cunit = np.ones(no_of_points_along_curve),
functions = np_functions
)
# Calculate the points along the curve
angles_along_curve = np.linspace(0, 2*np.pi, no_of_points_along_curve, endpoint=True) + np.pi
p_o = \
NP2(
x = f_x(angles_along_curve),
y = f_y(angles_along_curve)
)
# Show the curve by drawing a line above a thicker line
fig, ax = plt.subplots(figsize=figure_size, dpi=figure_dpi)
fig.text(0.30, 0.05, url)
ax.plot(p_o.x, p_o.y, color='darkblue', linewidth=10)
ax.plot(p_o.x, p_o.y, color='deepskyblue', linewidth=4)
ax.axis('equal')
plt.show()
# Numerical approximation of the first derivative of a univariate function
def first_derivative(fn, h=1e-4):
h2 = 2 * h
def d1_fn(t):
return (fn(t + h) - fn(t - h)) / h2
return d1_fn
# Create derivative functions for the curve
d1_f_x = first_derivative(f_x)
d1_f_y = first_derivative(f_y)
# Calculate vectors from the first derivatives at the points along the curve
v_d1 = \
NP2(
x = d1_f_x(angles_along_curve),
y = d1_f_y(angles_along_curve)
)
# Calculate tangent vectors at the points along the curve
v_t = v_d1.normalize()
# Calculate normal vectors at the points along the curve
v_n = v_t.perp()
# Show some of the tangent vectors (red) and the normal vectors (blue) along the curve
s = 16 # stride
sl = slice(None, -1, s)
fig, ax = plt.subplots(figsize=figure_size, dpi=figure_dpi)
fig.text(0.30, 0.05, url)
ax.quiver(
p_o.x[sl], p_o.y[sl],
v_t.x[sl], v_t.y[sl],
width = 0.003,
color = 'red',
scale = 3,
scale_units = 'xy',
pivot = 'middle'
)
ax.quiver(
p_o.x[sl], p_o.y[sl],
v_n.x[sl], v_n.y[sl],
width = 0.003,
color = 'blue',
scale = 3,
scale_units = 'xy',
pivot = 'middle'
)
ax.scatter(
p_o.x[sl], p_o.y[sl],
color = 'black',
marker = '.'
)
ax.axis('equal')
plt.show()
# Calculate points for two offset curves
d = 0.1
p_dm = p_o - d * v_n
p_dp = p_o + d * v_n
# Show the curve together with the two offset curves
lw = 5
fig, ax = plt.subplots(figsize=figure_size, dpi=figure_dpi)
fig.text(0.30, 0.05, url)
ax.plot(*p_dm, c='orange', linewidth=lw)
ax.plot(*p_dp, c='khaki', linewidth=lw)
ax.plot(*p_o, c='firebrick', linewidth=lw)
ax.set_facecolor('gray')
ax.axis('equal')
plt.show()
# Prepare for plotting with quad patches (between pairs of offset curves) instead of lines
def Patches(p_e, p_f, color='black'):
no_of_points = len(p_e.cnull)
return \
[
Polygon(
[
[ p_e.x[j], p_e.y[j] ],
[ p_f.x[j], p_f.y[j] ],
[ p_f.x[k], p_f.y[k] ],
[ p_e.x[k], p_e.y[k] ]
],
closed = True,
color = color
)
for j, k in zip(range(0, no_of_points-1), range(1, no_of_points))
]
# Calculate points for the offset curves
d = 0.04
p_cm = p_o - d * v_n
p_cp = p_o + d * v_n
a = 2 * d
p_am = p_o - a * v_n
p_ap = p_o + a * v_n
b = 4 * d
p_bm = p_o - b * v_n
p_bp = p_o + b * v_n
# Create the patches
patches_outer = Patches(p_am, p_bm)
patches_inner = Patches(p_ap, p_bp)
patches_center = Patches(p_cm, p_cp)
# Show every second of the patches along the curves
s = 2
sl1 = slice(None, 1 - s * 2, s * 2)
sl2 = slice(s * 2 - 1, None, s * 2)
fig, ax = plt.subplots(figsize=figure_size, dpi=figure_dpi)
fig.text(0.30, 0.05, url)
ax.add_collection(
PatchCollection(
patches_inner[sl1],
# match_original = True,
color = 'lightgoldenrodyellow'
)
)
ax.add_collection(
PatchCollection(
patches_inner[sl2],
# match_original = True,
color = 'lightgoldenrodyellow'
)
)
ax.add_collection(
PatchCollection(
patches_outer[sl1],
# match_original = True,
color = 'lightgoldenrodyellow'
)
)
ax.add_collection(
PatchCollection(
patches_outer[sl2],
# match_original = True,
color ='lightgoldenrodyellow'
)
)
ax.add_collection(
PatchCollection(
patches_center[sl1],
# match_original = True,
color = 'lightcoral'
)
)
ax.add_collection(
PatchCollection(
patches_center[sl2],
# match_original = True,
color = 'lightcoral'
)
)
ax.set_facecolor('gray')
ax.axis('equal')
plt.show()
# Calculate points for more offset curves
# NB: The order of the operands in the first multiplication matters here
v_n_w = v_n * np.sin(12 * angles_along_curve)
d = 0.04
p_cm = p_o - d * v_n_w
p_cp = p_o + d * v_n_w
a = 2 * d
p_am = p_o - a * v_n_w
p_ap = p_o + a * v_n_w
b = 4 * d
p_bm = p_o - b * v_n_w
p_bp = p_o + b * v_n_w
# Create more patches
patches_outer_w = Patches(p_am, p_bm)
patches_inner_w = Patches(p_ap, p_bp)
patches_center_w = Patches(p_cm, p_cp)
# Prepare values for choosing colors from a color map
phase_shift = np.pi / (no_of_points_along_curve - 1)
angles_for_color = 12 * (angles_along_curve + phase_shift)
values_for_color = (np.cos(angles_for_color) + 1) / 2
# Show the curves with colors cycling
fig = plt.figure(figsize=figure_size, dpi=figure_dpi)
fig.text(0.30, 0.05, url)
ax = fig.add_subplot(1, 1, 1)
ax.add_collection(
PatchCollection(
patches_inner_w,
array = values_for_color,
cmap = plt.cm.PuOr
)
)
ax.add_collection(
PatchCollection(
patches_outer_w,
array = values_for_color,
cmap = plt.cm.PuOr
)
)
ax.add_collection(
PatchCollection(
patches_center_w,
array = values_for_color,
cmap = plt.cm.PuOr
)
)
# ax.set_facecolor('grey')
ax.axis('equal')
plt.show()
# Show every second of the patches along the curves
s = 2
sl1 = slice(None, 1 - s * 2, s * 2)
sl2 = slice(s * 2 - 1, None, s * 2)
fig, ax = plt.subplots(figsize=figure_size, dpi=figure_dpi)
fig.text(0.30, 0.05, url)
ax.add_collection(
PatchCollection(
patches_inner_w[sl1],
color = 'powderblue'
)
)
ax.add_collection(
PatchCollection(
patches_inner_w[sl2],
color = 'powderblue'
)
)
ax.add_collection(
PatchCollection(
patches_outer_w[sl1],
color = 'powderblue'
)
)
ax.add_collection(
PatchCollection(
patches_outer_w[sl2],
color = 'powderblue'
)
)
ax.add_collection(
PatchCollection(
patches_center_w[sl1],
color = 'lightgoldenrodyellow'
)
)
ax.add_collection(
PatchCollection(
patches_center_w[sl2],
color = 'lightgoldenrodyellow'
)
)
ax.set_facecolor('grey')
ax.axis('equal')
plt.show()