-
Notifications
You must be signed in to change notification settings - Fork 11
/
SReT.py
482 lines (407 loc) · 16.1 KB
/
SReT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# SReT (Sliced Recursive Transformer: https://arxiv.org/abs/2111.05297)
# Zhiqiang Shen
# CMU & MBZUAI
# PiT (Rethinking Spatial Dimensions of Vision Transformers)
# Copyright 2021-present NAVER Corp.
# Apache License v2.0
# Timm (https://github.com/rwightman/pytorch-image-models)
# Ross Wightman
# Apache License v2.0
import torch
from einops import rearrange
from torch import nn
import math
from functools import partial
from timm.models.layers import trunc_normal_
from timm.models.layers import DropPath, to_2tuple, lecun_normal_
from timm.models.registry import register_model
class LearnableCoefficient(nn.Module):
def __init__(self):
super(LearnableCoefficient, self).__init__()
self.bias = nn.Parameter(torch.ones(1), requires_grad=True)
def forward(self, x):
out = x * self.bias
return out
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Non_proj(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=1., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.coefficient1 = LearnableCoefficient()
self.coefficient2 = LearnableCoefficient()
def forward(self, x, recursive_index):
x = self.coefficient1(x) + self.coefficient2(self.mlp(self.norm1(x)))
return x
class Group_Attention(nn.Module):
def __init__(self, dim, num_groups1=8, num_groups2=4, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
self.num_groups1 = num_groups1
self.num_groups2 = num_groups2
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, recursive_index):
B, N, C = x.shape
if recursive_index == False:
num_groups = self.num_groups1
else:
num_groups = self.num_groups2
if num_groups != 1:
idx = torch.randperm(N)
x = x[:,idx,:]
inverse = torch.argsort(idx)
qkv = self.qkv(x).reshape(B, num_groups, N // num_groups, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(2, 3).reshape(B, num_groups, N // num_groups, C)
x = x.permute(0, 3, 1, 2).reshape(B, C, N).transpose(1, 2)
if recursive_index == True and num_groups != 1:
x = x[:,inverse,:]
x = self.proj(x)
x = self.proj_drop(x)
return x
class Transformer_Block(nn.Module):
def __init__(self, dim, num_groups1, num_groups2, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Group_Attention(
dim, num_groups1=num_groups1, num_groups2=num_groups2, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.coefficient1 = LearnableCoefficient()
self.coefficient2 = LearnableCoefficient()
self.coefficient3 = LearnableCoefficient()
self.coefficient4 = LearnableCoefficient()
def forward(self, x, recursive_index):
x = self.coefficient1(x) + self.coefficient2(self.drop_path(self.attn(self.norm1(x),recursive_index)))
x = self.coefficient3(x) + self.coefficient4(self.drop_path(self.mlp(self.norm2(x))))
return x
class Transformer(nn.Module):
def __init__(self, base_dim, depth, recursive_num, groups1, groups2, heads, mlp_ratio, np_mlp_ratio,
drop_rate=.0, attn_drop_rate=.0, drop_path_prob=None):
super(Transformer, self).__init__()
self.layers = nn.ModuleList([])
embed_dim = base_dim * heads
if drop_path_prob is None:
drop_path_prob = [0.0 for _ in range(depth)]
blocks = [
Transformer_Block(
dim=embed_dim,
num_groups1=groups1,
num_groups2=groups2,
num_heads=heads,
mlp_ratio=mlp_ratio,
qkv_bias=True,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=drop_path_prob[i],
act_layer=nn.GELU,
norm_layer=partial(nn.LayerNorm, eps=1e-6)
)
for i in range(recursive_num)]
recursive_loops = int(depth/recursive_num)
non_projs = [
Non_proj(
dim=embed_dim, num_heads=heads, mlp_ratio=np_mlp_ratio, drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=drop_path_prob[i], norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU)
for i in range(depth)]
RT = []
for rn in range(recursive_num):
for rl in range(recursive_loops):
RT.append(blocks[rn])
RT.append(non_projs[rn*recursive_loops+rl])
self.blocks = nn.ModuleList(RT)
def forward(self, x):
h, w = x.shape[2:4]
x = rearrange(x, 'b c h w -> b (h w) c')
for i, blk in enumerate(self.blocks):
if (i+2)%4 == 0: # mark the recursive layers
recursive_index = True
else:
recursive_index = False
x = blk(x, recursive_index)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
return x
class conv_head_pooling(nn.Module):
def __init__(self, in_feature, out_feature, stride,
padding_mode='zeros'):
super(conv_head_pooling, self).__init__()
self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=stride + 1,
padding=stride // 2, stride=stride,
padding_mode=padding_mode, groups=in_feature)
def forward(self, x):
x = self.conv(x)
return x
class conv_embedding(nn.Module):
def __init__(self, in_channels, out_channels, patch_size,
stride, padding):
super(conv_embedding, self).__init__()
norm_layer = nn.BatchNorm2d
self.conv1 = nn.Conv2d(in_channels, int(out_channels/2), kernel_size=3,
stride=2, padding=1, bias=True)
self.bn1 = norm_layer(int(out_channels/2))
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(int(out_channels/2), out_channels, kernel_size=3,
stride=2, padding=1, bias=True)
self.bn2 = norm_layer(out_channels)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=3,
stride=2, padding=1, bias=True)
self.bn3 = norm_layer(out_channels)
self.relu3 = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
return x
class SReT(nn.Module):
def __init__(self, image_size, patch_size, stride, base_dims, depth, recursive_num, groups1, groups2, heads,
mlp_ratio, np_mlp_ratio, num_classes=1000, in_chans=3,
attn_drop_rate=.0, drop_rate=.0, drop_path_rate=.1):
super(SReT, self).__init__()
total_block = sum(depth)
padding = 0
block_idx = 0
width = int(image_size/8)
self.base_dims = base_dims
self.heads = heads
self.num_classes = num_classes
self.patch_size = patch_size
self.pos_embed = nn.Parameter(
torch.randn(1, base_dims[0] * heads[0], width, width),
requires_grad=True
)
self.patch_embed = conv_embedding(in_chans, base_dims[0] * heads[0],
patch_size, stride, padding)
self.pos_drop = nn.Dropout(p=drop_rate)
self.transformers = nn.ModuleList([])
self.pools = nn.ModuleList([])
for stage in range(len(depth)):
drop_path_prob = [drop_path_rate * i / total_block
for i in range(block_idx, block_idx + depth[stage])]
block_idx += depth[stage]
self.transformers.append(
Transformer(base_dims[stage], depth[stage], recursive_num[stage], groups1[stage], groups2[stage], heads[stage],
mlp_ratio, np_mlp_ratio,
drop_rate, attn_drop_rate, drop_path_prob)
)
if stage < len(heads) - 1:
self.pools.append(
conv_head_pooling(base_dims[stage] * heads[stage],
base_dims[stage + 1] * heads[stage + 1],
stride=2
)
)
self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6)
self.embed_dim = base_dims[-1] * heads[-1]
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# Classifier head
if num_classes > 0:
self.head = nn.Linear(base_dims[-1] * heads[-1], num_classes)
else:
self.head = nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
if num_classes > 0:
self.head = nn.Linear(self.embed_dim, num_classes)
else:
self.head = nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
pos_embed = self.pos_embed
x = self.pos_drop(x + pos_embed)
for stage in range(len(self.pools)):
x = self.transformers[stage](x)
x = self.pools[stage](x)
x = self.transformers[-1](x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
class Distilled_SReT(SReT):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
x = self.forward_features(x)
x_cls = self.head(x)
# `x_cls, x_cls` is used to make it compatible with DeiT codebase, while SReT uses global_average pooling, and soft label only for knowledge distillation
# so `x_cls` is enough
if self.training:
# return x_cls, x_cls
return x_cls
else:
return x_cls
@register_model
def SReT_T(pretrained=False, **kwargs):
model = SReT(
image_size=224,
patch_size=16,
stride=8,
base_dims=[32, 32, 32],
depth=[4, 10, 6],
recursive_num=[2,5,3],
heads=[2, 4, 8],
groups1=[8, 4, 1],
groups2=[2, 1, 1],
mlp_ratio=3.6,
np_mlp_ratio=1,
**kwargs
)
if pretrained:
state_dict = \
torch.load('SReT_T.pth', map_location='cpu')
model.load_state_dict(state_dict['model'])
return model
@register_model
def SReT_LT(pretrained=False, **kwargs):
model = SReT(
image_size=224,
patch_size=16,
stride=8,
base_dims=[32, 32, 32],
depth=[4, 10, 6],
recursive_num=[2, 5, 3],
heads=[2, 4, 8],
groups1=[8, 4, 1], # [16, 14, 1]
groups2=[2, 1, 1], # [1, 1, 1]
mlp_ratio=4.0,
np_mlp_ratio=1,
**kwargs
)
if pretrained:
state_dict = \
torch.load('SReT_LT.pth', map_location='cpu')
model.load_state_dict(state_dict['model'])
return model
def SReT_S(pretrained=False, **kwargs):
model = SReT(
image_size=224,
patch_size=16,
stride=8,
base_dims=[42, 42, 42],
depth=[4, 10, 6],
recursive_num=[2, 5, 3],
heads=[3, 6, 12],
groups1=[8, 4, 1],
groups2=[2, 1, 1],
mlp_ratio=3.0,
np_mlp_ratio=2,
**kwargs
)
if pretrained:
state_dict = \
torch.load('SReT_S.pth', map_location='cpu')
model.load_state_dict(state_dict['model'])
return model
# Knowledge Distillation
@register_model
def SReT_T_distill(pretrained=False, **kwargs):
model = Distilled_SReT(
image_size=224,
patch_size=16,
stride=8,
base_dims=[32, 32, 32],
depth=[4, 10, 6],
recursive_num=[2, 5, 3],
heads=[2, 4, 8],
groups1=[8, 4, 1],
groups2=[2, 1, 1],
mlp_ratio=3.6,
np_mlp_ratio=1,
**kwargs
)
if pretrained:
state_dict = \
torch.load('SReT_T_distill.pth', map_location='cpu')
model.load_state_dict(state_dict['model'])
return model
@register_model
def SReT_LT_distill(pretrained=False, **kwargs):
model = Distilled_SReT(
image_size=224,
patch_size=16,
stride=8,
base_dims=[32, 32, 32],
depth=[4, 10, 6],
recursive_num=[2, 5, 3],
heads=[2, 4, 8],
groups1=[8, 4, 1],
groups2=[2, 1, 1],
mlp_ratio=4.0,
np_mlp_ratio=1,
**kwargs
)
if pretrained:
state_dict = \
torch.load('SReT_LT_distill.pth', map_location='cpu')
model.load_state_dict(state_dict['model'])
return model
def SReT_S_distill(pretrained=False, **kwargs):
model = Distilled_SReT(
image_size=224,
patch_size=16,
stride=8,
base_dims=[42, 42, 42],
depth=[4, 10, 6],
recursive_num=[2, 5, 3],
heads=[3, 6, 12],
groups1=[8, 4, 1],
groups2=[2, 1, 1],
mlp_ratio=3.0,
np_mlp_ratio=2,
**kwargs
)
if pretrained:
state_dict = \
torch.load('SReT_S_distill.pth', map_location='cpu')
model.load_state_dict(state_dict['model'])
return model