-
Notifications
You must be signed in to change notification settings - Fork 0
/
robo.py
286 lines (241 loc) · 9.72 KB
/
robo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import cv2
import os
import numpy as np
import time
import matplotlib.pyplot as plt
from robo.obstacles import Obstacles
from robo.se_detect import detect_se
from robo.align_image import align
from robo.astarplanner import AStarPlanner
class Robo():
def __init__(self,
actual_s_height = 0.15,
actual_s_width = 0.11,
grid_size = 40,
robot_radius = 96,
move_straight=True,
directory= "./images/check",
reference = './images/reference.jpg',
buffer = 8,
x_buffer = 50,
y_buffer = 80,
boundaries = [([0, 0, 150], [85, 150, 255]),
([0,180,180],[170,255,255]),
([180,180,180],[255,255,255])],
choose_smoothing = False):
self.move_straight = move_straight
self.actual_s_height = actual_s_height
self.actual_s_width = actual_s_width
self.grid_size = grid_size
self.robot_radius = robot_radius
self.directory = directory
self.reference = reference
self.buffer = buffer
self.x_buffer = x_buffer
self.y_buffer = y_buffer
self.boundaries = boundaries
self.choose_smoothing = choose_smoothing
def move(self):
#Walk through all the images in the image folder
image = self.findimgwSE()
cv2.imwrite("./images/outputimages/drone_img.jpg",image)
# image = self.alignimg(image)
# cv2.imwrite("./Path_planning/outputimages/aligned.jpg",image)
#Find S and E in the image
fin_box = self.findse(image)
#Get obstacles and colour the grid black as well as cover S and E with a black box
ox, oy = self.obstacles(image, fin_box)
#Get Path
rx, ry = self.findpath(image, ox, oy, fin_box)
#print(rx)
#print(ry)
if self.choose_smoothing == True:
rx, ry = self.path_smoothing(rx, ry)
else:
#need to reverse if nv smooth lines
rx.reverse()
ry.reverse()
if self.move_straight:
new_rx, new_ry = self.remove_redundant(rx, ry)
else:
new_rx, new_ry = self.get_corners(rx, ry)
#get scale
s_height = fin_box['S'][-2] #pixel values
s_width = fin_box['S'][-1] #pixel values
x_scale = (s_width/self.actual_s_width)
y_scale = (s_height/self.actual_s_height)
#scaling down to metres
scaled_rx = [x / x_scale for x in new_rx] #[m]
scaled_ry = [y / y_scale for y in new_ry] #[m]
#converting to form w starting pt as origin
st_x = scaled_rx[0]
st_y = scaled_ry[0]
robot_rx = [x - st_x for x in scaled_rx]
robot_ry = [y - st_y for y in scaled_ry]
print("__________________")
print("rx:", rx)
print("ry:", ry)
print("__________________")
print("new_rx:", new_rx)
print("new_ry:", new_ry)
print("__________________")
print("scaled_rx:", scaled_rx)
print("scaled_ry:", scaled_ry)
print("__________________")
plt.plot(rx, ry, "-r")
plt.plot(new_rx, new_ry, "-b")
plt.pause(.0001)
plt.savefig('./images/outputimages/path1.jpg')
# plt.show()
plt.plot(new_rx, new_ry, "-b")
image = cv2.cvtColor(cv2.flip(image,0), cv2.COLOR_BGR2RGB)
plt.imshow(image, origin='lower')
plt.savefig('./images/outputimages/path_w_image1.jpg')
# plt.show()
return robot_rx, robot_ry
def mask_img_white(self, image):
lower = np.array([200,200,200], dtype = "uint8")
upper = np.array([255,255,255], dtype = "uint8")
mask = cv2.inRange(image, lower, upper)
output = cv2.bitwise_and(image, image, mask=mask)
gray = cv2.cvtColor(output,cv2.COLOR_BGR2GRAY)
cv2.imwrite("./images/outputimages/gray.jpg", gray)
return output
def findimgwSE(self):
for root, dirs, files in os.walk(self.directory, topdown = False):
for name in files:
filepath = os.path.join(root, name)
print(filepath)
image = cv2.imread(filepath)
image = cv2.flip(image,0)
img_h, img_w, _ = image.shape
scale = 1936 / img_h
image = cv2.resize(image, (int(scale * img_w), int(scale * img_h)), interpolation=cv2.INTER_CUBIC)
#get white portions
gray = self.mask_img_white(image)
cv2.namedWindow("output", cv2.WINDOW_NORMAL)
cv2.imshow('output', gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
#detect letters S&E
fin_box = detect_se(gray)
print(fin_box)
if 'S' in fin_box.keys() and 'E' in fin_box.keys():
print("found image w both S and E")
return image
break
else:
print('no S or E')
continue
def alignimg(self, image):
reference = cv2.imread(self.reference)
image, warp_matrix = align(reference, image)
return image
def findse(self, image):
gray = self.mask_img_white(image)
#detect letters S&E
fin_box = detect_se(gray)
return fin_box
def obstacles(self, image, fin_box):
#Get centre of bboxes for S and E
sx = fin_box['S'][4]
sy = fin_box['S'][5]
gx = fin_box['E'][4]
gy = fin_box['E'][5]
#add rectangle over S and E with buffer
sbx = sx - fin_box['S'][-1]/2 - self.buffer - self.x_buffer
sby = sy - fin_box['S'][6]/2 - self.buffer
stx = sx + fin_box['S'][-1]/2 + self.buffer + self.x_buffer
sty = sy + fin_box['S'][6]/2 + self.buffer + self.y_buffer
ebx = gx - fin_box['E'][-1]/2 - self.buffer - self.x_buffer
eby = gy - fin_box['E'][6]/2 - self.buffer - self.y_buffer
etx = gx + fin_box['E'][-1]/2 + self.buffer + self.x_buffer
ety = gy + fin_box['E'][6]/2 + self.buffer
print("Image Shape:", image.shape)
masked_image = cv2.rectangle(image, (int(sbx), int(sby)), (int(stx), int(sty)), (0, 0, 0), -1)
masked_image = cv2.rectangle(masked_image, (int(ebx), int(eby)), (int(etx), int(ety)), (0, 0, 0), -1)
cv2.namedWindow("output", cv2.WINDOW_NORMAL)
cv2.imshow('output', masked_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# set obstacle positions
ox, oy = Obstacles(masked_image, self.boundaries).calc_oxy()
return ox, oy
def findpath(self, image, ox, oy, fin_box):
#set proper start and ending positions(they plot from top down)
sx = fin_box['S'][4] # [pixels]
sy = image.shape[0] - fin_box['S'][5] # [pixels]
gx = fin_box['E'][4] # [pixels]
gy = image.shape[0] - fin_box['E'][5] # [pixels]
# if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "og")
plt.plot(gx, gy, "ob")
plt.grid(True)
plt.axis("equal")
a_star = AStarPlanner(ox, oy, self.grid_size, self.robot_radius, self.move_straight)
rx, ry = a_star.planning(sx, sy, gx, gy)
plt.plot(rx, ry, "-r")
plt.pause(0.001)
plt.show()
return rx, ry
def remove_redundant(self, xc, yc):
xc = xc.copy()
yc = yc.copy()
i = 0
while i < len(xc) - 2:
triplex = round(xc[i], 2) == round(xc[i+1], 2) and round(xc[i+1], 2) == round(xc[i+2], 2)
tripley = round(yc[i] == yc[i+1], 2) and round(yc[i+1] == yc[i+2], 2)
if triplex or tripley:
xc.pop(i+1)
yc.pop(i+1)
i -= 1
i += 1
return xc, yc
def path_smoothing(self, xc, yc):
dist_threshold = self.grid_size * 2
win_size = 4 if len(xc) > 16 else 2
stride = 2
xc = xc[::-1] # reverse list
yc = yc[::-1]
move_x, move_y = [xc[0]], [yc[0]]
i = 0
while i + win_size < len(xc):
win_x = xc[i:i+win_size]
win_y = yc[i:i+win_size]
if max(win_x) - min(win_x) >= dist_threshold:
move_x.append(xc[i + win_size])
else:
move_x.append(move_x[-1])
if max(win_y) - min(win_y) >= dist_threshold:
move_y.append(yc[i + win_size])
else:
move_y.append(move_y[-1])
i += stride
if move_x[-1] != xc[-1] or move_y[-1] != yc[-1]:
move_x.append(xc[-1])
move_y.append(yc[-1])
return move_x, move_y
def get_corners(self, srx, sry):
new_rx, new_ry = [], []
for idx,value in enumerate(srx):
if idx == len(srx)-1:
new_rx.append(value)
new_ry.append(sry[idx])
break
else:
diff_x = srx[idx+1]-srx[idx]
diff_y = sry[idx+1]-sry[idx]
#print(diff_x,diff_y)
if value == srx[idx-1] and value == srx[idx+1]:
#print(value,ry[idx])
continue
elif sry[idx] == sry[idx-1] and sry[idx] == sry[idx+1]:
#print(value,ry[idx])
continue
elif (diff_x != 0.0 and srx[idx]-srx[idx-1] == diff_x) and (diff_y != 0.0 and sry[idx]-sry[idx-1] == diff_y):
continue
else:
new_rx.append(value)
new_ry.append(sry[idx])
return new_rx, new_ry