-
Notifications
You must be signed in to change notification settings - Fork 657
Generic Module Framework: Transitions
The generic module framework currently supports the following transitions:
Direct
transitions are the simplest of transitions. They transition directly to the indicated state. The value of a direct_transition
is simply the name of the state to transition to.
Please note that, for simplicity, transition examples in this document will always start at an Initial
state. In real modules, transitions can be applied to any state (except a Terminal
state) and can transition to any state.
The following example demonstrates a state that should transition directly to the "Delay_For_Encounter"
state:
"Initial": {
"type": "Initial",
"direct_transition": "Delay_For_Encounter"
}
Distributed
transitions will transition to one of several possible states based on the configured distribution. Distribution values are from 0.0
to 1.0
, such that a value of 0.55
would indicate a 55% chance of transitioning to the corresponding state. A distributed_transition
consists of an array of distribution
/transition
pairs for which the distribution
values should sum up to 1.0
.
If the distribution
values do not sum up to 1.0, the remaining distribution will transition to the last defined transition
state. For example, given distributions of 0.3
and 0.6
, the effective distribution of the last transition will actually be 0.7
.
If the distribution
values sum up to more than 1.0
, the remaining distributions are ignored (for example, if distribution values are 0.75
, 0.5
, and 0.3
, then the second transition will have an effective distribution of 0.25
, and the last transition will have an effective distribution of 0.0
).
The following example demonstrates a state that should transition to the "Medication_1"
state 15% of the time, the "Medication_2"
state 55% of the time, and the "Medication_3"
state 30% of the time:
"Initial": {
"type": "Initial",
"distributed_transition": [
{
"distribution": 0.15,
"transition": "Medication_1"
},
{
"distribution": 0.55,
"transition": "Medication_2"
},
{
"distribution": 0.30,
"transition": "Medication_3"
}
]
}
For cases where transition probabilities are likely to change based on many different factors, it may be useful to use a "named" transition probability, where the probability of taking any transition is based on the value in an attribute rather than fixed. In this case, instead of a number, the distribution
on the transition option is an object containing the name of the attribute to look up the transition probability, and a default value for the case where the attribute is not present on the patient.
"distributed_transition": [
{
"distribution": { "attribute" : "probability1", "default" : 0.15 },
"transition": "Terminal1"
},
{
"distribution": { "attribute" : "probability2", "default" : 0.55 },
"transition": "Terminal2"
},
{
"distribution": { "attribute" : "probability3", "default" : 0.30 },
"transition": "Terminal3"
}
]
Conditional
transitions will transition to one of several possible states based on conditional logic. A conditional_transition
consists of an array of condition
/transition
pairs which are tested in the order they are defined. The first condition that evaluates to true
will result in a transition to its corresponding transition
state. The last element in the condition_transition
array may contain only a transition
(with no condition
) to indicate a "fallback transition" when all other conditions are false
.
If none of the conditions
evaluated to true
, and no fallback transition was specified, the module will transition to a default Terminal
state.
Please see the Logic section for more information about creating logical conditions.
The following example demonstrates a state that should transition to the "Male_Patient"
state for male patients, the "Female_Patient
state for female patients, and the "Unknown_Gender"
state for patients with an unrecognized gender value.
"Initial": {
"type": "Initial",
"conditional_transition": [
{
"condition": {
"condition_type": "Gender",
"gender": "M"
},
"transition": "Male_Patient"
},
{
"condition": {
"condition_type": "Gender",
"gender": "F"
},
"transition": "Female_Patient"
},
{
"transition": "Unknown_Gender"
}
]
}
Complex
transitions are a combination of direct, distributed, and conditional transitions. A complex_transition
consists of an array of condition/transition pairs which are tested in the order they are defined. The first condition that evaluates to true
will result in a transition based on its corresponding transition
or distributions
. If the module defines a transition
, it will transition directly to that named state. If the module defines distributions
, it will then transition to one of these according to the same rules as the distributed_transition
. See Distributed for more detail. The last element in the complex_transition
array may omit the condition
to indicate a fallback transition when all other conditions are false
.
If none of the conditions
evaluated to true
, and no fallback transition was specified, the module will transition to the last defined transition.
Please see the Logic section for more information about creating logical conditions.
Example
The following example demonstrates a state that for male patients should transition to the "Male_Medication_1"
state with 15% probability and the "Male_Medication_2"
state with 85% probability, and for female patients should transition directly to the "Female_Medication"
state.
"Initial": {
"type": "Initial",
"complex_transition": [
{
"condition": {
"condition_type": "Gender",
"gender": "M"
},
"distributions": [
{
"distribution": 0.15,
"transition": "Male_Medication_1"
},
{
"distribution": 0.85,
"transition": "Male_Medication_2"
}
]
},
{
"condition": {
"condition_type": "Gender",
"gender": "F"
},
"transition": "Female_Medication"
}
]
}
Table-based transitions are used for probabilities that vary widely between different segments or cohorts of the population. When the probability of an event occurring is based on any combination of patient attributes (e.g. race
, ethnicity
, gender
, age
, smoker
status, or any other attribute in the system) you can use a lookup_table_transition
.
"Determine_Condition": {
"type": "Simple",
"name": "Determine_Condition",
"lookup_table_transition": [
{
"transition": "Lookuptablitis",
"default_probability": "0",
"lookup_table_name": "lookuptablitis.csv"
},
{
"transition": "No_Lookuptablitis",
"default_probability": "1",
"lookup_table_name": "lookuptablitis.csv"
}
]
}
The contents of lookuptablitis.csv
are below:
age,gender,state,Lookuptablitis,No_Lookuptablitis
0-17,M,Massachusetts,0,1
18-44,M,Massachusetts,0.25,0.75
45-64,M,Massachusetts,0.5,0.5
64-140,M,Massachusetts,0.75,0.25
0-17,F,Massachusetts,0,1
18-44,F,Massachusetts,0.3,0.7
45-64,F,Massachusetts,0.8,0.2
64-140,F,Massachusetts,0,1
...