forked from cvjena/semantic-embeddings
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
467 lines (343 loc) · 21.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import sys, os.path
sys.path.append(os.path.join(os.path.dirname(__file__), 'models', 'DenseNet'))
import numpy as np
import keras
from keras import backend as K
try:
import keras_applications
keras_applications.set_keras_submodules(
backend=keras.backend,
layers=keras.layers,
models=keras.models,
utils=keras.utils
)
except ImportError:
pass
import warnings
from models import cifar_resnet, cifar_pyramidnet, plainnet, wide_residual_network as wrn
import densenet # pylint: disable=import-error
from clr_callback import CyclicLR
from sgdr_callback import SGDR
ARCHITECTURES = ['simple', 'resnet-32', 'resnet-110', 'resnet-110-fc', 'resnet-110-wfc', 'wrn-28-10',
'densenet-100-12', 'densenet-100-24', 'densenet-bc-190-40', 'pyramidnet-272-200', 'pyramidnet-110-270',
'resnet-50', 'resnet-101', 'resnet-152', 'rn18', 'rn34', 'rn50', 'rn101', 'rn152', 'rn200', 'nasnet-a']
LR_SCHEDULES = ['SGD', 'SGDR', 'CLR', 'ResNet-Schedule']
def squared_distance(y_true, y_pred):
""" Computes the squared Euclidean distance between corresponding pairs of samples in two tensors. """
return K.sum(K.square(y_pred - y_true), axis=-1)
def mean_distance(y_true, y_pred):
""" Computes the Euclidean distance between corresponding pairs of samples in two tensors. """
return K.sqrt(K.sum(K.square(y_pred - y_true), axis=-1))
def inv_correlation(y_true, y_pred):
""" Computes 1 minus the dot product between corresponding pairs of samples in two tensors. """
return 1. - K.sum(y_true * y_pred, axis = -1)
def top_k_acc(k):
""" Returns a Keras metric function for measuring top-k accuracy. """
acc = lambda y_true, y_pred: keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k=k)
acc.name = 'acc{}'.format(k)
return acc
def nn_accuracy(embedding, dot_prod_sim = False, k = 1):
""" Metric computing classification accuracy by assigning samples to the class with the nearest embedding in feature space.
# Arguments:
- embedding: 2-d numpy array whose rows are class embeddings.
- dot_prod_sim: If True, the dot product will be used to find the most similar embedding (assumes L2-normalized embeddings and features).
Otherwise, Euclidean distance will be used.
- k: Compute top-k accuracy.
# Returns:
a Keras metric function taking y_true and y_pred as inputs and returning a tensor of sample-wise accuracies.
"""
def nn_accuracy(y_true, y_pred):
centroids = K.constant(embedding.T)
centroids_norm = K.constant((embedding.T ** 2).sum(axis = 0, keepdims = True))
pred_norm = K.sum(K.square(y_pred), axis = 1, keepdims = True)
dist = pred_norm + centroids_norm - 2 * K.dot(y_pred, centroids)
true_dist = K.sum(K.square(y_pred - y_true), axis = -1)
if k <= 1:
return K.cast(K.less(K.abs(true_dist - K.min(dist, axis = -1)), 1e-6), K.floatx())
else:
return K.cast(K.any(K.less(K.abs(-1 * K.tf.nn.top_k(-1 * dist, k, sorted=False)[0] - true_dist[:,None]), 1e-6), axis=-1), K.floatx())
def max_sim_acc(y_true, y_pred):
centroids = K.constant(embedding.T)
sim = K.dot(y_pred, centroids)
true_sim = K.sum(y_pred * y_true, axis = -1)
if k <= 1:
return K.cast(K.less(K.abs(K.max(sim, axis = -1) - true_sim), 1e-6), K.floatx())
else:
return K.cast(K.any(K.less(K.abs(K.tf.nn.top_k(sim, k, sorted=False)[0] - true_sim[:,None]), 1e-6), axis=-1), K.floatx())
metric = max_sim_acc if dot_prod_sim else nn_accuracy
if k > 1:
metric.name = '{}{}'.format(metric.__name__, k)
return metric
def devise_ranking_loss(embedding, margin = 0.1):
""" The ranking loss used by DeViSE.
# Arguments:
- embedding: 2-d numpy array whose rows are class embeddings.
- margin: margin for the ranking loss.
# Returns:
a Keras loss function taking y_true and y_pred as inputs and returning a loss tensor.
"""
def _loss(y_true, y_pred):
embedding_t = K.constant(embedding.T)
true_sim = K.sum(y_true * y_pred, axis = -1)
other_sim = K.dot(y_pred, embedding_t)
return K.sum(K.relu(margin - true_sim[:,None] + other_sim), axis = -1) - margin
return _loss
def l2norm(x):
""" L2-normalizes a tensor along the last axis. """
return K.tf.nn.l2_normalize(x, -1)
def build_network(num_outputs, architecture, classification = False, no_softmax = False, input_channels = None, name = None):
""" Constructs a CNN.
# Arguments:
- num_outputs: number of final output units.
- architecture: name of the architecture. See ARCHITECTURES for a list of possible values and README.md for descriptions.
- classification: If `True`, the final layer will have a softmax activation, otherwise no activation at all.
- no_softmax: Usually, the last layer will have a softmax activation if `classification` is True. However, if `no_softmax` is set
to True as well, the last layer will not have any activation.
- input_channels: Number of input channels.
- name: The name of the network.
# Returns:
keras.models.Model
"""
if architecture.lower().endswith('-selu'):
activation = 'selu'
architecture = architecture[:-5]
else:
activation = 'relu'
input_shape = None if input_channels is None else (None, None, input_channels)
# CIFAR-100 architectures
if architecture == 'resnet-32':
return cifar_resnet.SmallResNet(5, filters = [16, 32, 64], activation = activation, input_shape = input_shape,
include_top = classification, top_activation = None if no_softmax else 'softmax',
classes = num_outputs, name = name)
elif architecture == 'resnet-110':
return cifar_resnet.SmallResNet(18, filters = [16, 32, 64], activation = activation, input_shape = input_shape,
include_top = classification, top_activation = None if no_softmax else 'softmax',
classes = num_outputs, name = name)
elif architecture == 'resnet-110-fc':
return cifar_resnet.SmallResNet(18, filters = [16, 32, 64], activation = activation, input_shape = input_shape,
include_top = True, top_activation = 'softmax' if classification and (not no_softmax) else None,
classes = num_outputs, name = name)
elif architecture == 'resnet-110-wfc':
return cifar_resnet.SmallResNet(18, filters = [32, 64, 128], activation = activation, input_shape = input_shape,
include_top = True, top_activation = 'softmax' if classification and (not no_softmax) else None,
classes = num_outputs, name = name)
elif architecture == 'wrn-28-10':
if input_channels is None:
input_channels = 3
return wrn.create_wide_residual_network((32, 32, input_channels), nb_classes = num_outputs, N = 4, k = 10, verbose = 0,
final_activation = 'softmax' if classification and (not no_softmax) else None, name = name)
elif architecture == 'densenet-100-12':
return densenet.DenseNet(growth_rate = 12, depth = 100, nb_dense_block = 3, bottleneck = False, nb_filter = 16, reduction = 0.0,
classes = num_outputs, activation = 'softmax' if classification and (not no_softmax) else None, input_shape = input_shape, name = name)
elif architecture == 'densenet-100-24':
return densenet.DenseNet(growth_rate = 24, depth = 100, nb_dense_block = 3, bottleneck = False, nb_filter = 16, reduction = 0.0,
classes = num_outputs, activation = 'softmax' if classification and (not no_softmax) else None, input_shape = input_shape, name = name)
elif architecture == 'densenet-bc-190-40':
return densenet.DenseNet(growth_rate = 40, depth = 190, nb_dense_block = 3, bottleneck = True, nb_filter = -1, reduction = 0.5,
classes = num_outputs, activation = 'softmax' if classification and (not no_softmax) else None, input_shape = input_shape, name = name)
elif architecture == 'pyramidnet-272-200':
return cifar_pyramidnet.PyramidNet(272, 200, bottleneck = True, activation = activation, input_shape = input_shape,
classes = num_outputs, top_activation = 'softmax' if classification and (not no_softmax) else None, name = name)
elif architecture == 'pyramidnet-110-270':
return cifar_pyramidnet.PyramidNet(110, 270, bottleneck = False, activation = activation, input_shape = input_shape,
classes = num_outputs, top_activation = 'softmax' if classification and (not no_softmax) else None, name = name)
elif architecture == 'simple':
return plainnet.PlainNet(num_outputs,
activation = activation,
final_activation = 'softmax' if classification and (not no_softmax) else None,
input_shape=input_shape if input_shape is not None else (None, None, 3),
name = name)
# ImageNet architectures
elif architecture in ('resnet-50', 'resnet-101', 'resnet-152'):
if architecture == 'resnet-101':
factory = keras_applications.resnet.ResNet101
elif architecture == 'resnet-152':
factory = keras_applications.resnet.ResNet152
else:
# ResNet50 has been available from the beginning, while the other two were added in keras-applications 1.0.7.
# Thus, we use the initial implementation of ResNet50 for compatibility's sake.
factory = keras.applications.ResNet50
rn = factory(include_top=False, weights=None, input_shape=input_shape)
# Depending on the Keras version, the ResNet50 model may or may not contain a final average pooling layer.
rn_out = rn.layers[-2].output if isinstance(rn.layers[-1], keras.layers.AveragePooling2D) else rn.layers[-1].output
x = keras.layers.GlobalAvgPool2D(name='avg_pool')(rn_out)
x = keras.layers.Dense(num_outputs, activation = 'softmax' if classification and (not no_softmax) else None, name = 'prob' if classification else 'embedding')(x)
return keras.models.Model(rn.inputs, x, name=name)
elif architecture.startswith('rn'):
import keras_resnet.models
factories = {
'rn18' : keras_resnet.models.ResNet18,
'rn34' : keras_resnet.models.ResNet34,
'rn50' : keras_resnet.models.ResNet50,
'rn101' : keras_resnet.models.ResNet101,
'rn152' : keras_resnet.models.ResNet152,
'rn200' : keras_resnet.models.ResNet200
}
if input_channels is None:
input_channels = 3
input_ = keras.layers.Input((input_channels, None, None)) if K.image_data_format() == 'channels_first' else keras.layers.Input((None, None, input_channels))
rn = factories[architecture](input_, include_top = classification and (not no_softmax), classes = num_outputs, freeze_bn = False, name = name)
if (not classification) or no_softmax:
x = keras.layers.GlobalAvgPool2D(name = 'avg_pool')(rn.outputs[-1])
x = keras.layers.Dense(num_outputs, name = 'prob' if classification else 'embedding', activation = None if no_softmax else 'softmax')(x)
rn = keras.models.Model(input_, x, name = name)
return rn
elif architecture == 'nasnet-a':
if input_channels is None:
input_channels = 3
nasnet = keras.applications.NASNetLarge(include_top=False, input_shape=(224, 224, input_channels), weights=None, pooling='avg')
x = keras.layers.Dense(num_outputs, activation = 'softmax' if classification and (not no_softmax) else None, name = 'prob' if classification else 'embedding')(nasnet.output)
return keras.models.Model(nasnet.inputs, x, name=name)
else:
raise ValueError('Unknown network architecture: {}'.format(architecture))
def get_custom_objects(architecture):
""" Provides a dictionary with custom objects required for loading a certain model architecture using `keras.models.load_model`. """
if architecture in ('resnet-32', 'resnet-110', 'resnet-110-fc', 'resnet-110-wfc', 'pyramidnet-272-200', 'pyramidnet-110-270'):
return { 'ChannelPadding' : cifar_resnet.ChannelPadding }
else:
return {}
def get_lr_schedule(schedule, num_samples, batch_size, schedule_args = {}):
""" Creates a learning rate schedule.
# Arguments:
- schedule: Name of the schedule. Possible values:
- 'sgd': Stochastic Gradient Descent with ReduceLROnPlateau or LearningRateSchedule callback.
- 'sgdr': Stochastic Gradient Descent with Cosine Annealing and Warm Restarts.
- 'clr': Cyclical Learning Rates.
- 'resnet-schedule': Hand-crafted schedule used by He et al. for training ResNet.
- num_samples: Number of training samples.
- batch_size: Number of samples per batch.
- schedule_args: Further arguments for the specific learning rate schedule.
'sgd' supports:
- 'sgd_patience': Number of epochs without improvement before reducing the LR. Default: 10.
- 'sgd_min_lr': Minimum learning rate. Default : 1e-4
- 'sgd_schedule': Comma-separated list of `epoch:lr` pairs, defining a learning rate schedule.
The total number of epochs can be appended to this list, separated by a comma as well.
If this is specified, the learning rate will not be reduced on plateaus automatically
and `sgd_patience` and `sgd_min_lr` will be ignored.
The following example would mean to train for 50 epochs, starting with a learning rate
of 0.1 and reducing it by a factor of 10 after 30 and 40 epochs: "1:0.1,31:0.01,41:0.001,50".
'sgdr' supports:
- 'sgdr_base_len': Length of the first cycle. Default: 12.
- 'sgdr_mul': Factor multiplied with the length of the cycle after the end of each one. Default: 2.
- 'sgdr_max_lr': Initial learning rate at the beginning of each cycle. Default: 0.1.
'clr' supports:
- 'clr_step_len': Number of training epochs per half-cycle. Default: 12.
- 'clr_min_lr': Minimum learning rate. Default: 1e-5.
- 'clr_max_lr': Maximum learning rate: Default: 0.1.
# Returns:
- a list of callbacks for being passed to the fit function,
- a suggested number of training epochs.
"""
if schedule.lower() == 'sgd':
if ('sgd_schedule' in schedule_args) and (schedule_args['sgd_schedule'] is not None) and (schedule_args['sgd_schedule'] != ''):
def lr_scheduler(schedule, epoch, cur_lr):
if schedule[0][0] > epoch:
return cur_lr
for i in range(1, len(schedule)):
if schedule[i][0] > epoch:
return schedule[i-1][1] if schedule[i-1][1] is not None else cur_lr
return schedule[-1][1] if schedule[-1][1] is not None else cur_lr
schedule = [(int(point[0]) - 1, float(point[1]) if len(point) > 1 else None)
for sched_tuple in schedule_args['sgd_schedule'].split(',') for point in [sched_tuple.split(':')]]
schedule.sort()
return [keras.callbacks.LearningRateScheduler(
lambda ep, cur_lr: lr_scheduler(schedule, ep, cur_lr)
)], schedule[-1][0] + 1
else:
if 'sgd_patience' not in schedule_args:
schedule_args['sgd_patience'] = 10
if 'sgd_min_lr' not in schedule_args:
schedule_args['sgd_min_lr'] = 1e-4
return [
keras.callbacks.ReduceLROnPlateau('val_loss', patience = schedule_args['sgd_patience'], epsilon = 1e-4, min_lr = schedule_args['sgd_min_lr'], verbose = True)
], 200
elif schedule.lower() == 'sgdr':
if 'sgdr_base_len' not in schedule_args:
schedule_args['sgdr_base_len'] = 12
if 'sgdr_mul' not in schedule_args:
schedule_args['sgdr_mul'] = 2
if 'sgdr_max_lr' not in schedule_args:
schedule_args['sgdr_max_lr'] = 0.1
return (
[SGDR(1e-6, schedule_args['sgdr_max_lr'], schedule_args['sgdr_base_len'], schedule_args['sgdr_mul'])],
sum(schedule_args['sgdr_base_len'] * (schedule_args['sgdr_mul'] ** i) for i in range(5))
)
elif schedule.lower() == 'clr':
if 'clr_step_len' not in schedule_args:
schedule_args['clr_step_len'] = 12
if 'clr_min_lr' not in schedule_args:
schedule_args['clr_min_lr'] = 1e-5
if 'clr_max_lr' not in schedule_args:
schedule_args['clr_max_lr'] = 0.1
return (
[CyclicLR(schedule_args['clr_min_lr'], schedule_args['clr_max_lr'], schedule_args['clr_step_len'] * (num_samples // batch_size), mode = 'triangular')],
schedule_args['clr_step_len'] * 20
)
elif schedule.lower() == 'resnet-schedule':
def resnet_scheduler(epoch):
if epoch >= 120:
return 0.001
elif epoch >= 80:
return 0.01
elif epoch >= 1:
return 0.1
else:
return 0.01
return [keras.callbacks.LearningRateScheduler(resnet_scheduler)], 164
else:
raise ValueError('Unknown learning rate schedule: {}'.format(schedule))
def add_lr_schedule_arguments(parser):
""" Adds common command-line arguments for controlling different learning rate schedules to a given `argparse.ArgumentParser`. """
arggroup = parser.add_argument_group('Parameters for --lr_schedule=SGD')
arggroup.add_argument('--sgd_patience', type = int, default = None, help = 'Patience of learning rate reduction in epochs.')
arggroup.add_argument('--sgd_lr', type = float, default = 0.1, help = 'Initial learning rate.')
arggroup.add_argument('--sgd_min_lr', type = float, default = None, help = 'Minimum learning rate.')
arggroup.add_argument('--sgd_schedule', type = str, default = None,
help = 'Comma-separated list of `epoch:lr` pairs, defining a learning rate schedule. The total number of epochs can be appended to this list, separated by a comma as well.')
arggroup = parser.add_argument_group('Parameters for --lr_schedule=SGDR')
arggroup.add_argument('--sgdr_base_len', type = int, default = None, help = 'Length of first cycle in epochs.')
arggroup.add_argument('--sgdr_mul', type = int, default = None, help = 'Multiplier for cycle length after each cycle.')
arggroup.add_argument('--sgdr_max_lr', type = float, default = None, help = 'Maximum learning rate.')
arggroup = parser.add_argument_group('Parameters for --lr_schedule=CLR')
arggroup.add_argument('--clr_step_len', type = int, default = None, help = 'Length of each step in epochs.')
arggroup.add_argument('--clr_min_lr', type = float, default = None, help = 'Minimum learning rate.')
arggroup.add_argument('--clr_max_lr', type = float, default = None, help = 'Maximum learning rate.')
class TemplateModelCheckpoint(keras.callbacks.ModelCheckpoint):
"""Saves a given model after each epoch (for multi GPU training). """
def __init__(self, tpl_model, filepath, *args, **kwargs):
super(TemplateModelCheckpoint, self).__init__(filepath, *args, **kwargs)
self.tpl_model = tpl_model
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epochs_since_last_save += 1
if self.epochs_since_last_save >= self.period:
self.epochs_since_last_save = 0
filepath = self.filepath.format(epoch=epoch + 1, **logs)
if self.save_best_only:
current = logs.get(self.monitor)
if current is None:
warnings.warn('Can save best model only with %s available, '
'skipping.' % (self.monitor), RuntimeWarning)
else:
if self.monitor_op(current, self.best):
if self.verbose > 0:
print('Epoch %05d: %s improved from %0.5f to %0.5f,'
' saving model to %s'
% (epoch + 1, self.monitor, self.best,
current, filepath))
self.best = current
if self.save_weights_only:
self.tpl_model.save_weights(filepath, overwrite=True)
else:
self.tpl_model.save(filepath, overwrite=True)
else:
if self.verbose > 0:
print('Epoch %05d: %s did not improve' %
(epoch + 1, self.monitor))
else:
if self.verbose > 0:
print('Epoch %05d: saving model to %s' % (epoch + 1, filepath))
if self.save_weights_only:
self.tpl_model.save_weights(filepath, overwrite=True)
else:
self.tpl_model.save(filepath, overwrite=True)