-
Notifications
You must be signed in to change notification settings - Fork 1
/
Parallel-D_MGAC.py
629 lines (492 loc) · 28 KB
/
Parallel-D_MGAC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#!/usr/bin/env -S python3 -u
#PBS -N Saman
#PBS -l select=1:ncpus=32:mem=64gb
#PBS -l walltime=72:00:00
#PBS -v OMP_NUM_THREADS=32
#PBS -j oe
#PBS -k oed
#PBS -M [email protected]
#PBS -m ae
import os
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch
from torch_geometric.nn import GATConv
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.model_selection import train_test_split
from torch_geometric.data import Data
import pandas as pd
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.svm import SVR
from torch_geometric.nn import global_mean_pool, global_max_pool, GlobalAttention
import time
import concurrent.futures
import logging
import psutil
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def read_data(file_path):
data = pd.read_excel(file_path)
data['User_ID'] = data['User_ID'].astype(str)
data['Items_ID'] = data['Items_ID'].astype(str)
user_id_map = {uid: i for i, uid in enumerate(data['User_ID'].unique())}
num_users = len(user_id_map)
item_id_map = {mid: i + num_users for i, mid in enumerate(data['Items_ID'].unique())}
return data, user_id_map, item_id_map
def L_BGNN(data, criteria, user_id_map, item_id_map):
matrices = [] # Initialize a list to store the normalized matrices for each criterion
n_nodes = len(user_id_map) + len(item_id_map)
for criterion in criteria:
adj_matrix = np.zeros((n_nodes, n_nodes), dtype=np.int32)
for i in range(len(data)):
uid = user_id_map[data['User_ID'][i]]
mid = item_id_map[data['Items_ID'][i]]
rating = data[criterion][i]
adj_matrix[uid][mid] = rating
adj_matrix[mid][uid] = rating
# For the following, note that adj_matrix is symmetric.
# Calculate vector of degrees
margins = np.maximum(np.sum(adj_matrix, axis=0), 1.0)
# Divide the matrix by the harmonic mean of its margins.
normalized_matrix = (adj_matrix / margins[:, None] + adj_matrix / margins[None, :]) / 2
matrices.append(normalized_matrix)
return tuple(matrices)
# ------------------------ Define the GAT model
class GAT(nn.Module):
def __init__(self, in_channels, out_channels, num_heads=8):
super(GAT, self).__init__()
self.num_heads = num_heads
self.head_dim = out_channels // num_heads
self.conv_layers = nn.ModuleList([
GATConv(in_channels, self.head_dim, heads=1) for _ in range(num_heads)
])
self.fc = nn.Linear(num_heads * self.head_dim, out_channels)
self.leakyrelu = nn.LeakyReLU(0.2)
self.layer_norm = nn.LayerNorm(out_channels)
self.global_fc = nn.Linear(out_channels, out_channels)
self.attention_weights = nn.Parameter(torch.ones(num_heads))
def forward(self, x, edge_index, edge_attr):
x = F.dropout(x, p=0.2, training=self.training)
head_outs = [conv(x, edge_index, edge_attr=edge_attr) for conv in self.conv_layers]
x_local = torch.cat(head_outs, dim=-1)
self_attention = F.leaky_relu(self.fc(x_local))
self_attention = F.softmax(self_attention, dim=-1)
x_local = x_local * self_attention
x_local = self.leakyrelu(x_local)
x_local = self.fc(x_local)
x_local = self.layer_norm(x_local)
x_local = F.normalize(x_local, p=2, dim=1)
x_global = torch.mean(x_local, dim=0)
global_attention = F.relu(self.global_fc(x_global))
global_attention = F.softmax(global_attention, dim=-1)
x = x_local * global_attention
return x
def fusion_embeddings_vectors(self, embeddings_list):
max_size = max(embedding.size(0) for embedding in embeddings_list)
# Pad embeddings to the maximum size
padded_embeddings = [F.pad(embedding, (0, 0, 0, max_size - embedding.size(0))) for embedding in embeddings_list]
# Concatenate the padded embeddings along the second dimension (axis 1)
fused_embeddings = torch.cat(padded_embeddings, dim=1)
return fused_embeddings
def Multi_Embd(self, matrices, num_epochs=100, learning_rate=0.01):
dataset_list = []
for normalized_matrix in matrices:
edges = torch.tensor(np.array(np.where(normalized_matrix)).T, dtype=torch.long).t().contiguous().clone().detach()
edge_attr = torch.tensor(normalized_matrix[edges[0], edges[1]], dtype=torch.float).clone().detach()
x = torch.randn(normalized_matrix.shape[0], 16) # Assuming in_channels=16 for the GAT model
dataset = Data(x=x, edge_index=edges, edge_attr=edge_attr)
dataset_list.append(dataset)
optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate)
embeddings_list = []
for i, dataset in enumerate(dataset_list):
print(f'Training GAT graph A_C{i + 1}')
for epoch in range(num_epochs):
loss = self.train_GAT(optimizer, dataset)
if epoch % 10 == 0:
print(f'Epoch {epoch}, Loss {loss:.4f}')
with torch.no_grad():
embeddings = self(dataset.x, dataset.edge_index, dataset.edge_attr)
embeddings_list.append(embeddings)
fused_embeddings = self.fusion_embeddings_vectors(embeddings_list)
# Print fused embeddings
print("Fused Embeddings:")
print(fused_embeddings)
return fused_embeddings
def local_contrastive_loss(self, embeddings_list, adjacency_matrices, dissimilarity_threshold=0.3, temperature=0.1):
total_loss = torch.tensor(0.0)
num_views = len(embeddings_list)
num_nodes = embeddings_list[0].size(0)
for i in range(num_views):
# Calculate neighborhood similarity for each node in view i
similarities = []
for node in range(num_nodes):
node_embedding = embeddings_list[i][node]
neighbors = torch.nonzero(adjacency_matrices[i][node]).squeeze()
if len(neighbors.shape) == 0:
neighbors = neighbors.unsqueeze(0) # Ensure neighbors is at least 1D
neighbor_embeddings = embeddings_list[i][neighbors]
similarity = F.cosine_similarity(node_embedding.unsqueeze(0), neighbor_embeddings, dim=1).mean()
similarities.append((similarity, node))
# Select node with highest average similarity as the anchor
_, anchor_node = max(similarities, key=lambda x: x[0])
# Print the selected anchor node and its similarity
print(f"View {i}: Selected Anchor Node {anchor_node} with Similarity {similarities[anchor_node][0].item()}")
for j in range(num_views):
if i != j:
anchor = embeddings_list[i][anchor_node]
positive = embeddings_list[j][anchor_node]
# Calculate similarity of the anchor node to all other nodes in view j
all_similarities = F.cosine_similarity(anchor.unsqueeze(0), embeddings_list[j], dim=1)
# Select the least similar node as the negative sample based on the dissimilarity threshold
for k in range(num_nodes):
negative_node = torch.argmax(all_similarities).item()
if negative_node != anchor_node and all_similarities[negative_node] < dissimilarity_threshold:
negative = embeddings_list[j][negative_node]
break
# Compute InfoNCE loss
pos_similarity = F.cosine_similarity(anchor.unsqueeze(0), positive.unsqueeze(0), dim=-1) / temperature
neg_similarity = F.cosine_similarity(anchor.unsqueeze(0), negative.unsqueeze(0), dim=-1) / temperature
logits = torch.cat([pos_similarity, neg_similarity], dim=0)
labels = torch.tensor([1, 0]).unsqueeze(0).to(logits.device)
# InfoNCE loss
info_nce_loss = F.cross_entropy(logits.unsqueeze(0), labels)
total_loss += info_nce_loss
return total_loss / (num_views * (num_views - 1))
def global_contrastive_loss(self, embeddings_list, temperature=0.1):
global_loss = torch.tensor(0.0)
num_views = len(embeddings_list)
# Compute global embeddings
global_embeddings = [torch.mean(emb, dim=0) for emb in embeddings_list]
for i in range(num_views):
for j in range(num_views):
if i != j:
pos_similarity = F.cosine_similarity(global_embeddings[i].unsqueeze(0), global_embeddings[j].unsqueeze(0), dim=-1) / temperature
neg_similarities = []
for k in range(num_views):
if k != i and k != j:
neg_similarities.append(F.cosine_similarity(global_embeddings[i].unsqueeze(0), global_embeddings[k].unsqueeze(0), dim=-1) / temperature)
neg_similarities = torch.cat(neg_similarities, dim=0)
logits = torch.cat([pos_similarity, neg_similarities], dim=0)
labels = torch.tensor([1] + [0] * (num_views - 2)).unsqueeze(0).to(logits.device)
# InfoNCE loss
info_nce_loss = F.cross_entropy(logits.unsqueeze(0), labels)
global_loss += info_nce_loss
return global_loss / (num_views * (num_views - 1))
def l2_regularization(self, l2_weight=0.1):
l2_reg = torch.norm(torch.stack([torch.norm(param, p=2) for param in self.parameters()]), p=2)
return l2_weight * l2_reg
def train_GAT(self, optimizer, data, embeddings_list, adjacency_matrices, alpha=0.5, beta=0.5, gamma=0.1):
self.train()
optimizer.zero_grad()
outputs = self(data.x, data.edge_index, data.edge_attr)
embeddings = outputs
local_contrastive_loss_value = self.local_contrastive_loss(embeddings_list, adjacency_matrices)
global_contrastive_loss_value = self.global_contrastive_loss(embeddings_list)
l2_reg = self.l2_regularization()
total_loss = alpha * local_contrastive_loss_value + beta * global_contrastive_loss_value + gamma * l2_reg
total_loss.backward()
optimizer.step()
return total_loss
# -------------Recommendation Section -------------------------
def Recommendation_items_Top_k(fused_embeddings, user_id_map, data, threshold_func=None, top_k=1):
recommendations_f_items = {}
num_users = len(user_id_map)
# Convert fused embeddings to numpy array, focusing on users
fused_embeddings_np = fused_embeddings.cpu().detach().numpy()[:num_users]
# Compute similarities between embeddings
similarities = cosine_similarity(fused_embeddings_np)
# Iterate over all users in order of index
grouped = data.groupby('User_ID')
uids = sorted(user_id_map.items(), key=lambda x: x[1])
for user_id, user_idx in uids:
# Determine threshold value using threshold_func
if threshold_func is not None:
threshold_A = threshold_func(fused_embeddings[user_idx]).item()
else:
# Set a default threshold value if threshold_func is not provided
threshold_A = 0.1
# Find similar users based on cosine similarity and dynamic threshold
similar_users_idx = np.where(similarities[user_idx] >= threshold_A)[0]
# Check if there are similar users for the current user
if len(similar_users_idx) > 0:
# Sort similar users by similarity score and select top_k users
similar_users_sorted_idx = similar_users_idx[np.argsort(similarities[user_idx][similar_users_idx])[::-1][:top_k]]
# Initialize recommended items list for the current user
recommended_items = []
# Retrieve the current user's rating from the data
user_data = grouped.get_group(user_id)
if len(user_data) > 0: # Check if there are ratings for this user
current_user_rating = user_data['Overall_Rating'].values[0]
# Get recommended items for the user
for user_idx_2 in similar_users_sorted_idx:
user_id_2 = uids[user_idx_2][0]
for _, row in grouped.get_group(user_id_2).iterrows():
item_id = row['Items_ID']
overall_rating = row['Overall_Rating']
# Check if overall rating is similar to the
# current user's rating and filter out items
# already rated by the current user
if item_id not in user_data['Items_ID'].values and abs(overall_rating - current_user_rating) <= threshold_A:
recommended_items.append({'item_id': item_id, 'Overall_Rating': overall_rating})
# Sort recommended items by overall rating
recommended_items = sorted(recommended_items, key=lambda x: x['Overall_Rating'], reverse=True)[:top_k]
# Add recommended items for the current user to the dictionary
recommendations_f_items[user_id] = recommended_items
else:
recommendations_f_items[user_id] = None
else:
# No similar users found, pass the user's embedding
recommendations_f_items[user_id] = None
return recommendations_f_items
def split_data(data, test_size=0.2, random_state=42):
""" Split the data into train and test sets. """
data['User_ID'] = data['User_ID'].astype(str)
data['Items_ID'] = data['Items_ID'].astype(str)
data_subset = data[['User_ID', 'Items_ID', 'Overall_Rating']]
train_data, test_data = train_test_split(data_subset, test_size=test_size, random_state=random_state)
return train_data, test_data
def save_data(train_data, test_data, output_path):
""" Save train and test sets to Excel files. """
train_file_path = os.path.join(output_path, 'train_data.xlsx')
test_file_path = os.path.join(output_path, 'test_data.xlsx')
train_data.to_excel(train_file_path, index=False)
test_data.to_excel(test_file_path, index=False)
def train_svr_model(train_data, fused_embeddings, user_id_map):
""" Train SVR model using training data and embeddings. """
train_X = fused_embeddings.cpu().detach().numpy()[train_data['User_ID'].astype('category').cat.codes]
train_y = train_data['Overall_Rating'].values
svr_model = SVR()
svr_model.fit(train_X, train_y)
# Compute train predictions and metrics
train_predictions = svr_model.predict(train_X)
train_mae = mean_absolute_error(train_y, train_predictions)
train_rmse = mean_squared_error(train_y, train_predictions) ** 0.5
return svr_model, train_mae, train_rmse
def create_subsets(train_data, subset_sizes):
""" Create subsets from the training data based on the specified sizes. """
subsets = {}
total_size = len(train_data)
for size in subset_sizes:
if size > total_size:
raise ValueError("Subset size cannot be greater than the total training data size.")
subset = train_data.sample(frac=size / 100.0, random_state=42)
subsets[f'{size}%'] = subset
return subsets
def evaluate_subsets(subsets, svr_model, fused_embeddings, user_id_map):
""" Evaluate the SVR model on subsets of training data. """
subset_mae_values = []
subset_rmse_values = []
for label, subset in subsets.items():
subset_X = fused_embeddings.cpu().detach().numpy()[subset['User_ID'].astype('category').cat.codes]
subset_y = subset['Overall_Rating'].values
subset_predictions = svr_model.predict(subset_X)
subset_mae = mean_absolute_error(subset_y, subset_predictions)
subset_rmse = mean_squared_error(subset_y, subset_predictions) ** 0.5
print(f"MAE for {label} subset:", subset_mae)
print(f"RMSE for {label} subset:", subset_rmse)
subset_mae_values.append(subset_mae)
subset_rmse_values.append(subset_rmse)
# Calculate mean and std for MAE and RMSE
subset_mae_mean = np.mean(subset_mae_values)
subset_mae_std = np.std(subset_mae_values)
subset_rmse_mean = np.mean(subset_rmse_values)
subset_rmse_std = np.std(subset_rmse_values)
print(f"\nOverall MAE for subsets: {subset_mae_mean:.4f} ± {subset_mae_std:.4f}")
print(f"Overall RMSE for subsets: {subset_rmse_mean:.4f} ± {subset_rmse_std:.4f}")
def evaluate_RS_Model(fused_embeddings, user_id_map, item_id_map, data, output_path, test_size=0.2, random_state=42):
# Split and save the data into train and test sets
train_data, test_data = split_data(data, test_size=test_size, random_state=random_state)
save_data(train_data, test_data, output_path)
# Prepare training data
train_X = fused_embeddings.cpu().detach().numpy()[train_data['User_ID'].astype('category').cat.codes]
train_y = train_data['Overall_Rating'].values
# Instantiate and train the SVR model
svr_model = SVR()
svr_model.fit(train_X, train_y)
# Compute predictions for train data
train_predictions = svr_model.predict(train_X)
# Calculate MAE and RMSE for train data
train_mae = mean_absolute_error(train_y, train_predictions)
train_rmse = mean_squared_error(train_y, train_predictions) ** 0.5
print("MAE for train data:", train_mae)
print("RMSE for train data:", train_rmse)
# Define the threshold function
def threshold_function(embedding):
return torch.tensor(0.1)
# Get training recommendations
train_recommendations = Recommendation_items_Top_k(fused_embeddings, user_id_map, data, threshold_func=threshold_function, top_k=1)
# Extract features and ratings for training recommendations
train_recommendation_features = []
train_recommendation_ratings = []
for user_id, recommendations in train_recommendations.items():
if recommendations is not None:
for recommendation in recommendations:
item_id = recommendation['item_id']
if user_id_map[user_id] < len(fused_embeddings) and item_id in item_id_map:
recommendation_features = fused_embeddings[user_id_map[user_id]].cpu().detach().numpy()
recommendation_rating = recommendation['Overall_Rating']
train_recommendation_features.append(recommendation_features)
train_recommendation_ratings.append(recommendation_rating)
train_recommendation_features = np.array(train_recommendation_features)
train_recommendation_ratings = np.array(train_recommendation_ratings)
# If there are recommendations, incorporate them into training data
if len(train_recommendation_features) > 0:
enhanced_train_X = np.concatenate((train_X, train_recommendation_features), axis=0)
enhanced_train_y = np.concatenate((train_y, train_recommendation_ratings), axis=0)
# Retrain the SVR model using enhanced training data
svr_model.fit(enhanced_train_X, enhanced_train_y)
# Prepare test data
test_user_ids = test_data['User_ID'].values.astype(str)
test_user_indices = [user_id_map.get(user_id, -1) for user_id in test_user_ids]
valid_test_user_indices = [index for index in test_user_indices if 0 <= index < len(fused_embeddings)]
test_X = fused_embeddings[valid_test_user_indices]
# Make predictions for test data
test_predictions = svr_model.predict(test_X)
# Prepare ground truth ratings for test data
test_ground_truth_ratings = test_data['Overall_Rating'].values
trimmed_test_ground_truth_ratings = test_ground_truth_ratings[:len(valid_test_user_indices)]
# Calculate MAE and RMSE for test data
test_mae = mean_absolute_error(trimmed_test_ground_truth_ratings, test_predictions)
test_rmse = mean_squared_error(trimmed_test_ground_truth_ratings, test_predictions) ** 0.5
print("MAE for test data:", test_mae)
print("RMSE for test data:", test_rmse)
# Evaluate subsets
subset_sizes = [40, 60, 80, 100] # Define the subset sizes to evaluate
subsets = create_subsets(train_data, subset_sizes)
# Lists to hold MAE and RMSE values for each subset
subset_mae_values = []
subset_rmse_values = []
for label, subset in subsets.items():
subset_X = fused_embeddings.cpu().detach().numpy()[subset['User_ID'].astype('category').cat.codes]
subset_y = subset['Overall_Rating'].values
subset_predictions = svr_model.predict(subset_X)
subset_mae = mean_absolute_error(subset_y, subset_predictions)
subset_rmse = mean_squared_error(subset_y, subset_predictions) ** 0.5
print(f"MAE for {label} subset:", subset_mae)
print(f"RMSE for {label} subset:", subset_rmse)
# Store values for standard deviation calculation
subset_mae_values.append(subset_mae)
subset_rmse_values.append(subset_rmse)
# Calculate and print the mean and std for the subsets
subset_mae_mean = np.mean(subset_mae_values)
subset_mae_std = np.std(subset_mae_values)
subset_rmse_mean = np.mean(subset_rmse_values)
subset_rmse_std = np.std(subset_rmse_values)
print(f"\nOverall MAE for subsets: {subset_mae_mean:.4f} ± {subset_mae_std:.4f}")
print(f"Overall RMSE for subsets: {subset_rmse_mean:.4f} ± {subset_rmse_std:.4f}")
return train_mae, train_rmse, test_mae, test_rmse
def evaluate_RS_Model_multiple_runs(fused_embeddings, user_id_map, item_id_map, data, output_path, test_size=0.2, run_counts=[30]):
results = {}
for num_runs in run_counts:
print(f"Evaluating for {num_runs} runs")
# Lists to store MAE and RMSE values for train and test from each run
train_mae_values = []
train_rmse_values = []
test_mae_values = []
test_rmse_values = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(evaluate_RS_Model, fused_embeddings, user_id_map, item_id_map, data, output_path, test_size, i) for i in range(num_runs)]
for future in concurrent.futures.as_completed(futures):
try:
train_mae, train_rmse, test_mae, test_rmse = future.result()
train_mae_values.append(train_mae)
train_rmse_values.append(train_rmse)
test_mae_values.append(test_mae)
test_rmse_values.append(test_rmse)
except Exception as exc:
print(f"Run generated an exception: {exc}")
# Calculate the mean and standard deviation for train and test MAE and RMSE
train_mae_mean = np.mean(train_mae_values)
train_mae_std = np.std(train_mae_values)
train_rmse_mean = np.mean(train_rmse_values)
train_rmse_std = np.std(train_rmse_values)
test_mae_mean = np.mean(test_mae_values)
test_mae_std = np.std(test_mae_values)
test_rmse_mean = np.mean(test_rmse_values)
test_rmse_std = np.std(test_rmse_values)
# Store results in the dictionary
results[num_runs] = {
'train_mae_mean': train_mae_mean,
'train_mae_std': train_mae_std,
'train_rmse_mean': train_rmse_mean,
'train_rmse_std': train_rmse_std,
'test_mae_mean': test_mae_mean,
'test_mae_std': test_mae_std,
'test_rmse_mean': test_rmse_mean,
'test_rmse_std': test_rmse_std
}
# Print summary of results for the run
print(f"\nSummary for {num_runs} runs:")
print(f"Train MAE: {train_mae_mean:.4f} ± {train_mae_std:.4f}")
print(f"Train RMSE: {train_rmse_mean:.4f} ± {train_rmse_std:.4f}")
print(f"Test MAE: {test_mae_mean:.4f} ± {test_mae_std:.4f}")
print(f"Test RMSE: {test_rmse_mean:.4f} ± {test_rmse_std:.4f}")
return results
# ---------------------Main Function ---------------------------
def main(file_path, criteria, save_embeddings=False):
# Read data for the selected dataset
logging.info("Reading data...")
start_time = time.time()
data, user_id_map, item_id_map = read_data(file_path)
logging.info(f"Reading data finished. Time taken: {time.time() - start_time:.2f} seconds")
# Determine save path for embeddings
if save_embeddings and not isinstance(save_embeddings, str):
save_embeddings = file_path + '.embed.pt'
# Check if embeddings exist; if so, load them
if save_embeddings and os.path.isfile(save_embeddings):
embeddings_loaded = True
logging.info("Loading embeddings...")
start_time = time.time()
fused_embeddings = torch.load(save_embeddings, weights_only=True)
logging.info(f"Loading embeddings finished. Time taken: {time.time() - start_time:.2f} seconds")
else:
embeddings_loaded = False
logging.info("Constructing sociomatrices...")
start_time = time.time()
matrices = L_BGNN(data, criteria, user_id_map, item_id_map)
logging.info(f"Constructing sociomatrices finished. Time taken: {time.time() - start_time:.2f} seconds")
# Constructing the model
logging.info("Constructing model...")
start_time = time.time()
model = GAT(in_channels=16, out_channels=256)
logging.info(f"Constructing model finished. Time taken: {time.time() - start_time:.2f} seconds")
# Generating embeddings
logging.info("Generating embeddings...")
start_time = time.time()
fused_embeddings = model.Multi_Embd(matrices, num_epochs=100, learning_rate=0.01)
logging.info(f"Generating embeddings finished. Time taken: {time.time() - start_time:.2f} seconds")
# Save embeddings if they were generated
if save_embeddings and not embeddings_loaded:
logging.info("Saving embeddings...")
start_time = time.time()
torch.save(fused_embeddings, save_embeddings)
logging.info(f"Embeddings saved to {save_embeddings}. Time taken: {time.time() - start_time:.2f} seconds")
# Running the evaluation for multiple runs
output_path = f"{file_path}.csv"
results = evaluate_RS_Model_multiple_runs(fused_embeddings, user_id_map, item_id_map, data, output_path, run_counts=[30])
# Print results
for run, metrics in results.items():
print(f"Results for {run} runs:")
print(f"Train MAE: {metrics['train_mae_mean']} ± {metrics['train_mae_std']}")
print(f"Train RMSE: {metrics['train_rmse_mean']} ± {metrics['train_rmse_std']}")
print(f"Test MAE: {metrics['test_mae_mean']} ± {metrics['test_mae_std']}")
print(f"Test RMSE: {metrics['test_rmse_mean']} ± {metrics['test_rmse_std']}")
if __name__ == "__main__":
# Define file paths for different datasets on the local server
file_paths = {
'Movies_Yahoo': 'C://MCRS//Movies_Yahoo.xlsx',
'BeerAdvocate': 'C://MCRS//BeerAdvocate.xlsx',
'TripAdvisor': 'C://MCRS//TripAdvisor.xlsx'
}
# Define criteria for different datasets
criteria_mapping = {
'Movies_Yahoo': ['C1', 'C2', 'C3', 'C4'],
'BeerAdvocate': ['C1', 'C2', 'C3', 'C4'],
'TripAdvisor': ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7']
}
# Define the dataset to run
DATASET_TO_RUN = 'TripAdvisor'
# Run the main function with the specified dataset and criteria
main(file_paths[DATASET_TO_RUN], criteria_mapping[DATASET_TO_RUN], True)