forked from avani112/HacktoberFest2021-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Binary Tree.c
93 lines (77 loc) · 2.57 KB
/
Binary Tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <stdio.h>
#include <stdlib.h>
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node
{
int data;
struct node *left;
struct node *right;
};
// A utility function to create a node
struct node* newNode (int data)
{
struct node* temp = (struct node *) malloc( sizeof(struct node) );
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// A recursive function to construct Full from pre[] and post[].
// preIndex is used to keep track of index in pre[].
// l is low index and h is high index for the current subarray in post[]
struct node* constructTreeUtil (int pre[], int post[], int* preIndex,
int l, int h, int size)
{
// Base case
if (*preIndex >= size || l > h)
return NULL;
// The first node in preorder traversal is root. So take the node at
// preIndex from preorder and make it root, and increment preIndex
struct node* root = newNode ( pre[*preIndex] );
++*preIndex;
// If the current subarray has only one element, no need to recur
if (l == h)
return root;
// Search the next element of pre[] in post[]
int i;
for (i = l; i <= h; ++i)
if (pre[*preIndex] == post[i])
break;
// Use the index of element found in postorder to divide
// postorder array in two parts. Left subtree and right subtree
if (i <= h)
{
root->left = constructTreeUtil (pre, post, preIndex,
l, i, size);
root->right = constructTreeUtil (pre, post, preIndex,
i + 1, h-1, size);
}
return root;
}
// The main function to construct Full Binary Tree from given preorder and
// postorder traversals. This function mainly uses constructTreeUtil()
struct node *constructTree (int pre[], int post[], int size)
{
int preIndex = 0;
return constructTreeUtil (pre, post, &preIndex, 0, size - 1, size);
}
// A utility function to print inorder traversal of a Binary Tree
void printInorder (struct node* node)
{
if (node == NULL)
return;
printInorder(node->left);
printf("%d ", node->data);
printInorder(node->right);
}
// Driver program to test above functions
int main ()
{
int pre[] = {1, 2, 4, 8, 9, 5, 3, 6, 7};
int post[] = {8, 9, 4, 5, 2, 6, 7, 3, 1};
int size = sizeof( pre ) / sizeof( pre[0] );
struct node *root = constructTree(pre, post, size);
printf("Inorder traversal of the constructed tree: \n");
printInorder(root);
return 0;
}