-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIDP.py
57 lines (52 loc) · 2.45 KB
/
IDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import math
import itertools
import min_cut_solvers
def evaluateSplits(coalition, coalition_values, **kwargs):
#print("coalition",coalition,end='=')
agents = coalition.split(',')
n_agents = len(agents)
best_cost_brute = f[coalition]
xbest_brute = [coalition]
for b in range(1, 2**(n_agents-1)):
x = [int(term) for term in reversed(list(bin(b)[2:].zfill(n_agents)))]
first_half = ','.join([agent for i,agent in enumerate(agents) if int(x[i])])
second_half = ','.join([agent for i,agent in enumerate(agents) if not int(x[i])])
if best_cost_brute <= (f[first_half]+f[second_half]):
best_cost_brute = f[first_half]+f[second_half]
xbest_brute = [first_half, second_half]
#print(xbest_brute, best_cost_brute)
return xbest_brute, best_cost_brute
def idp(coalition_values, evaluateSplits = evaluateSplits, min_cut_solver = min_cut_solvers.min_cut_brute_force, **kwargs):
n_agents = math.ceil(math.log(len(coalition_values),2))
global t
t = {}
global f
f = {}
for coalition,coalition_value in coalition_values.items():
t[coalition] = [coalition]
f[coalition] = coalition_value
for coalition_size in range(2, n_agents):
if((math.ceil((2*n_agents)/3)<coalition_size) and (coalition_size < n_agents)): # Ignoring this condition will make this function work as DP instead of IDP
continue
coalitions_of_cur_size = list(itertools.combinations(map(str,range(1,n_agents+1)), coalition_size))
for curCoalition in coalitions_of_cur_size:
curCoalition = ','.join(curCoalition)
split_t, split_f = evaluateSplits(curCoalition, coalition_values, min_cut_solver = min_cut_solver, **kwargs)
if split_f > f[curCoalition]:
t[curCoalition] = split_t
f[curCoalition] = split_f
grand_coalition = ','.join(map(str,range(1,n_agents+1)))
split_t, split_f = evaluateSplits(grand_coalition, coalition_values, min_cut_solver = min_cut_solver, **kwargs)
if split_f > f[grand_coalition]:
t[grand_coalition] = split_t
f[grand_coalition] = split_f
temp = t[grand_coalition].copy()
optimal_cs = []
while(len(temp)):
C = temp.pop()
if len(t[C])==1:
optimal_cs+=t[C]
if(len(t[C])!=1):
temp += t[C]
optimal_cs_value = sum([f[coalition] for coalition in optimal_cs])
return optimal_cs, optimal_cs_value