-
Notifications
You must be signed in to change notification settings - Fork 1
/
launch.py
162 lines (136 loc) · 5.93 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys
import argparse
import os
import time
import logging
from datetime import datetime
import datasets
import systems
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger, CSVLogger
from tools.utils.callbacks import CodeSnapshotCallback, ConfigSnapshotCallback, CustomProgressBar
from tools.utils.misc import load_config
def main():
parser = argparse.ArgumentParser(description="MetaCap")
parser.add_argument('--config', required=True, help='path to config file')
parser.add_argument('--gpu', default='0', help='GPU(s) to be used')
parser.add_argument('--resume', default=None, help='path to the weights to be resumed')
parser.add_argument('--ckpt', default=None, help='path to the weights to be resumed')
parser.add_argument('--ckpt1', default=None, help='path to the weights to be resumed')
parser.add_argument('--ckpt2', default=None, help='path to the weights to be resumed')
parser.add_argument(
'--resume_weights_only',
action='store_true',
help='specify this argument to restore only the weights (w/o training states), e.g. --resume path/to/resume --resume_weights_only'
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--train', action='store_true')
group.add_argument('--validate', action='store_true')
group.add_argument('--test', action='store_true')
group.add_argument('--predict', action='store_true')
# group.add_argument('--export', action='store_true') # TODO: a separate export action
parser.add_argument('--notest', action='store_true')
parser.add_argument('--zeroeval', action='store_true')
parser.add_argument('--notrial', action='store_true')
parser.add_argument('--exp_dir', default='./exp')
parser.add_argument('--runs_dir', default='./runs')
parser.add_argument('--verbose', action='store_true', help='if true, set logging level to DEBUG')
args, extras = parser.parse_known_args()
# set CUDA_VISIBLE_DEVICES then import pytorch-lightning
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
n_gpus = len(args.gpu.split(','))
# parse YAML config to OmegaConf
config = load_config(args.config, cli_args=extras)
config.cmd_args = vars(args)
config.trial_name = config.get('trial_name') or (config.tag + datetime.now().strftime('@%Y%m%d-%H%M%S'))
if not args.ckpt is None and args.notrial:
temp = args.ckpt.split('/')
for item in temp:
if config.tag in item:
tempTrial = item
config.trial_name = tempTrial
if tempTrial is None or tempTrial =='':
exit()
if config.exp_dir is None or config.exp_dir=='':
config.exp_dir = os.path.join(args.exp_dir, config.name)
else:
config.exp_dir = os.path.join(config.get('exp_dir'), config.name)
if config.runs_dir is None or config.runs_dir=='':
config.runs_dir = args.runs_dir
else:
config.runs_dir = config.get('runs_dir')
config.save_dir = config.get('save_dir') or os.path.join(config.exp_dir, config.trial_name, 'save')
config.ckpt_dir = config.get('ckpt_dir') or os.path.join(config.exp_dir, config.trial_name, 'ckpt')
config.code_dir = config.get('code_dir') or os.path.join(config.exp_dir, config.trial_name, 'code')
config.config_dir = config.get('config_dir') or os.path.join(config.exp_dir, config.trial_name, 'config')
config.model.ckpt = args.ckpt
config.model.ckpt1 = args.ckpt1
config.model.ckpt2 = args.ckpt2
logger = logging.getLogger('pytorch_lightning')
if args.verbose:
logger.setLevel(logging.DEBUG)
if 'seed' not in config:
config.seed = int(time.time() * 1000) % 1000
pl.seed_everything(config.seed)
dm = datasets.make(config.dataset.name, config)
system = systems.make(config.system.name, config, load_from_checkpoint=None if not args.resume_weights_only else args.resume)
callbacks = []
if args.train:
callbacks += [
ModelCheckpoint(
dirpath=config.ckpt_dir,
**config.checkpoint
),
LearningRateMonitor(logging_interval='step'),
CodeSnapshotCallback(
config.code_dir, use_version=False
),
ConfigSnapshotCallback(
config, config.config_dir, use_version=False
),
CustomProgressBar(refresh_rate=1),
]
loggers = []
if args.train:
loggers += [
TensorBoardLogger(config.runs_dir, name=config.name, version=config.trial_name),
CSVLogger(config.exp_dir, name=config.trial_name, version='csv_logs')
]
if sys.platform == 'win32':
# does not support multi-gpu on windows
strategy = 'dp'
assert n_gpus == 1
else:
# strategy = 'ddp_find_unused_parameters_false'
strategy = 'dp'
trainer = Trainer(
devices=n_gpus,
accelerator='gpu',
callbacks=callbacks,
logger=loggers,
strategy=strategy,
**config.trainer
)
# if args.zeroeval:
# trainer.validate(system, datamodule=dm)
if args.train:
if args.resume and not args.resume_weights_only:
# FIXME: different behavior in pytorch-lighting>1.9 ?
trainer.fit(system, datamodule=dm, ckpt_path=args.resume)
else:
trainer.fit(system, datamodule=dm)
if args.notest:
pass
else:
trainer.test(system, datamodule=dm)
elif args.validate:
trainer.validate(system, datamodule=dm, ckpt_path=args.resume)
elif args.test:
trainer.test(system, datamodule=dm, ckpt_path=args.resume)
elif args.predict:
trainer.predict(system, datamodule=dm, ckpt_path=args.resume)
if __name__ == '__main__':
main()