-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathcreate_label_lmdb.py
executable file
·68 lines (55 loc) · 2.47 KB
/
create_label_lmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -------------------------------------------------------------------
# Create the LMDB for the labels
# Both train and validation lmdbs can be created using this
# Author: Sukrit Shankar
# -------------------------------------------------------------------
# -------------------------------------
import pylab as pltss
from pylab import *
import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.io
import os.path
import lmdb # May require 'pip install lmdb' if lmdb not found
# -------- Import Caffe ---------------
caffe_root = '/home/sukrit/Desktop/caffe-master/'
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
# Please set the following values and paths as per your needs
N = 162770 # Number of data instances
M = 40 # Number of possible labels for each data instance
output_lmdb_path = '/home/sukrit/Desktop/caffe_project/lmdbs/label_lmdb' # Path of the output label LMDB
labels_mat_file = 'labels.mat' # Mat file for labels N x M
# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
# -------- Write in LMDB for Caffe ----------
X = np.zeros((N, M, 1, 1), dtype=np.uint8)
y = np.zeros(N, dtype=np.int64)
map_size = X.nbytes * 10
env = lmdb.open(output_lmdb_path, map_size=map_size)
# ---------------------------------
# Read the mat file and assign to X
mat_contents = scipy.io.loadmat(labels_mat_file)
X[:,:,0,0] = mat_contents['labels']
# The above expects that the MAT file contains the variable as labels
# To instead check the variable names in the mat file, and use them in a more judicious way, do
# array_names = scipy.io.whosmat(labels_mat_file)
# print '\n Array Names \n', array_names
print X # Check to see if the contents are well populated within the expected range
print X.shape # Check to see if X is of shape N x M x 1 x 1
with env.begin(write=True) as txn:
# txn is a Transaction object
for i in range(N):
datum = caffe.proto.caffe_pb2.Datum()
datum.channels = X.shape[1]
datum.height = X.shape[2]
datum.width = X.shape[3]
datum.data = X[i].tostring() # or .tobytes() if numpy < 1.9
datum.label = int(y[i])
str_id = '{:08}'.format(i)
# The encode is only essential in Python 3
txn.put(str_id.encode('ascii'), datum.SerializeToString())
# Print the progress
print 'Done Label Writing for Data Instance = ' + str(i)