-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_and_eval_loop.py
executable file
·122 lines (105 loc) · 4.38 KB
/
train_and_eval_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Training and evaluation binary that is implemented as a custom loop."""
from absl import app
from absl import flags
import train_and_eval_lib
flags.DEFINE_string(
name='model_dir',
default="./Output/",
help='Path to output model directory where event and checkpoint files will '
'be written.')
flags.DEFINE_string(name='root', default=None, help='Path to root data path.')
flags.DEFINE_string(name='method', default='Contrastive', help='dataset')
# data
flags.DEFINE_string(name='dataset', default='cifar10ood', help='dataset')
flags.DEFINE_string(name='category', default='', help='category')
flags.DEFINE_boolean(name='is_validation', default=False, help='validation')
flags.DEFINE_string(
name='aug_list',
default='hflip+jitter,hflip+jitter+cutout0.3',
help='input augmentation list')
flags.DEFINE_string(
name='aug_list_for_test', default=None, help='input augmentation list')
flags.DEFINE_string(
name='input_shape', default='32,32,3', help='data input shape')
flags.DEFINE_string(
name='distaug_type',
default='1',
help='number of distribution augmentation')
# network architecture
flags.DEFINE_string(
name='net_type',
default='ResNet18',
help='network type (see model/__init__.py)')
flags.DEFINE_float(
name='net_width', default=1, help='network width (# channnels)')
flags.DEFINE_string(name='head_dims', default=None, help='MLP architecture')
flags.DEFINE_integer(
name='latent_dim', default=2, help='number of hidden units for FC layer')
# optimization
flags.DEFINE_integer(name='seed', default=0, help='random seed')
flags.DEFINE_boolean(
name='force_init', default=True, help='force training from scratch')
flags.DEFINE_string(
name='optim_type', default='sgd', help='stochastic optimizer')
flags.DEFINE_string(
name='sched_type', default='cos', help='learning rate scheduler')
flags.DEFINE_string(
name='sched_freq',
default='epoch',
help='update frequency. `step` or `epoch`')
flags.DEFINE_integer(
name='sched_step_size', default=1, help='step size for step LR')
flags.DEFINE_float(name='sched_gamma', default=0.995, help='gamma for step LR')
flags.DEFINE_float(
name='sched_min_rate', default=0.0, help='minimum rate for cosine LR')
flags.DEFINE_integer(
name='sched_level', default=7, help='level for half-cosine cycle')
flags.DEFINE_float(name='learning_rate', default=0.3, help='learning rate')
flags.DEFINE_float(name='weight_decay', default=0.00001, help='weight decay')
flags.DEFINE_boolean(
name='regularize_bn', default=False, help='regularize BN parameters')
flags.DEFINE_float(name='momentum', default=0.9, help='momentum')
flags.DEFINE_boolean(name='nesterov', default=False, help='nesterov')
flags.DEFINE_integer(
name='num_epoch', default=2048, help='number of training epochs')
flags.DEFINE_integer(
name='num_batch', default=0, help='number of batches per epoch')
flags.DEFINE_integer(name='batch_size', default=64, help='batch size')
# monitoring and checkpoint
flags.DEFINE_string(name='ckpt_prefix', default='', help='checkpoint prefix')
flags.DEFINE_integer(
name='ckpt_epoch', default=32, help='frequency to save checkpoints')
flags.DEFINE_string(name='file_path', default=None, help='file path')
flags.DEFINE_float(name='temperature', default=0.1, help='Temperature')
flags.mark_flag_as_required('model_dir')
FLAGS = flags.FLAGS
class HParams(dict):
def __init__(self, *args, **kwargs):
super(HParams, self).__init__(*args, **kwargs)
self.__dict__ = self
def main(unused_argv):
hparams = HParams({
flag.name: flag.value for flag in FLAGS.get_flags_for_module('__main__')
})
# start training
trainer = train_and_eval_lib.get_trainer(hparams)
with trainer.strategy.scope():
trainer.config()
trainer.train()
if __name__ == '__main__':
app.run(main)