Leaderboard Reopen!
Microsoft News Recommendation Competition Winners Announced
Congratulations to all participants and winners of the Microsoft News Recommendation Competition! In the last two months, over 200 participants from more than 90 institutions in 19 countries and regions joined the competition and collectively advanced the state of the art of news recommendation.
The competition is based on the recently released MIND dataset, an open, large-scale English news dataset with impression logs. Details of the dataset are available at this ACL paper.
With the competition successfully closed, the leaderboard is now reopn. Want to see if you can grab the top spot? Get familiar with the news recommendation scenario. Then dive into some baselines such as DKN, LSTUR, NAML, NPA and NRMS and start hacking!
Microsoft News Recommendation Competition Winners Announced, Leaderboard to Reopen!
Congratulations to all participants and winners of the Microsoft News Recommendation Competition! In the last two months, over 200 participants from more than 90 institutions in 19 countries and regions joined the competition and collectively advanced the state of the art of news recommendation.
The competition is based on the recently released MIND dataset, an open, large-scale English news dataset with impression logs. Details of the dataset are available at this ACL paper.
With the competition successfully closed, the leaderboard will reopen soon. Want to see if you can grab the top spot? Get familiar with the news recommendation scenario. Then dive into some baselines such as DKN, LSTUR, NAML, NPA and NRMS and get ready!
Microsoft is hosting a News Recommendation competition based on the MIND dataset, a large-scale English news dataset with impression logs. Check out the ACL paper, get familiar with the news recommendation scenario, and dive into the quick start example using the DKN algorithm. Then try some other algorithms (NAML, NPA, NRMS, LSTUR) and tools in recommenders and submit your entry!
New relase: Recommenders 2020.8
13 new algos and multiple fixes and new features
New relase: Recommenders 2019.9
We reached 5000 stars!!
New release: Recommenders 2019.6
New release: Recommenders 2019.2
We reached 1000 stars!!
First release: Recommenders 2018.12
First pre-release: Recommenders 2018.11