-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
125 lines (98 loc) · 3.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# -*- coding: utf-8 -*-
import torch
import numpy as np
from torch import optim
from loss import BalancedBCEWithLogitsLoss
from torch.nn import BCEWithLogitsLoss
from sklearn.metrics import f1_score
from tqdm import tqdm, trange
def evaluate(dataloader, model, device, no_labels=False):
# Turn on evaluation mode which disables dropout.
model.eval()
logits = []
preds = []
labels = []
ids = []
avg_loss = 0.
loss_fct = BCEWithLogitsLoss()
def append(all_tensors, batch_tensor):
if len(all_tensors) == 0:
all_tensors.append(batch_tensor)
else:
all_tensors[0] = np.append(all_tensors[0], batch_tensor, axis=0)
return all_tensors
def detach(tensor, dtype=None):
if dtype:
return tensor.detach().cpu().numpy().astype(dtype)
else:
return tensor.detach().cpu().numpy()
with torch.no_grad():
for batch in tqdm(dataloader, desc="Iteration"):
batch = tuple(t.to(device) for t in batch)
if no_labels:
b_inputs, b_ids = batch
else:
b_inputs, b_labels, b_ids = batch
b_logits = model(b_inputs)
if not no_labels:
loss = loss_fct(b_logits, b_labels)
avg_loss += loss.item()
b_preds = (torch.sigmoid(b_logits).detach().cpu().numpy() >= 0.5).astype(int)
b_logits = detach(b_logits, float)
if not no_labels:
b_labels = detach(b_labels, int)
b_ids = detach(b_ids, int)
preds = append(preds, b_preds)
logits = append(logits, b_logits)
if not no_labels:
labels = append(labels, b_labels)
ids = append(ids, b_ids)
preds = preds[0]
logits = logits[0]
if not no_labels:
labels = labels[0]
avg_loss /= len(dataloader)
ids = ids[0]
if not no_labels:
score = f1_score(y_true=labels, y_pred=preds, average='micro')
print("\nEvaluation - loss: {:.6f} f1: {:.4f}%\n".format(avg_loss, score))
else:
score = 0.
return score, (logits, preds, labels, ids, avg_loss)
def train(train_dataloader, dev_dataloader, model,
epochs, lr, device, grad_clip=None,
model_save_fname="model.pt"):
optimizer = optim.Adam(model.parameters(), lr=lr)
steps = 0
best_fmicro = None
last_fmicro = None
loss_fct = BCEWithLogitsLoss()
evals = []
try:
for epoch_no in trange(epochs, desc="Epoch"):
model.train()
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
inputs, labels, ids = batch
logits = model(inputs)
loss = loss_fct(logits, labels)
loss.backward()
tr_loss += loss.item()
nb_tr_examples += inputs.size(0)
nb_tr_steps += 1
if grad_clip:
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
optimizer.step()
optimizer.zero_grad()
steps += 1
score, eval_data = evaluate(dev_dataloader, model, device)
if not best_fmicro or score < best_fmicro:
torch.save(model.state_dict(), "./{}".format(model_save_fname))
best_fmicro = score
evals.append((epoch_no, score, eval_data))
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
return evals