Skip to content
Leroux Romain edited this page Apr 15, 2019 · 31 revisions

Introduction

About Streamroot.

Problem at hand / Data pipeline WHY

Raw data -> group by something (stream, isp, ...) -> aggregate over 5-minute windows

Solution with Flink

Data pipeline HOW.

Detail Flink mechanisms for resilient sinks.

Detail code organisation (available on github, maven deps, testable with local docker compose).

Basic implementation - InfluxSinkV1

First of all let's write a simple implementation of a sink writing data point to InfluxDB.

public class InfluxSinkV1 extends RichSinkFunction<Point> {

    private static final String RETENTION_POLICY = "";

    private transient InfluxDB influx;

    private final String connUrl;
    private final String user;
    private final String password;
    private final String database;

    public InfluxSinkV1(String connUrl, String user, String password, String database) {
        this.connUrl = connUrl;
        this.user = user;
        this.password = password;
        this.database = database;
    }

    @Override
    public void open(Configuration parameters) {
        influx = InfluxDBFactory.connect(connUrl, user, password);
    }

    @Override
    public void invoke(Point point, Context context) {
        influx.write(database, RETENTION_POLICY, point);
    }

    @Override
    public void close() {
        influx.close();
    }
}

A sink class must implement SinkFunction<IN>, however here we choose to extend RichSinkFunction<IN>, the reason is that the rich version provides a public void open(...) method that can be used to initialize any kind of complex/non-serializable state. In this case the transient InfluxDB client is not Serializable which is why we have to create it through this open method.

The main sink method invoke is quite simple, it takes a Point and uses influx client to send it.

Let's check that everything is alright with a quick unit test:

@Test
public void testWritingData() {
    // create an InfluxSink
    InfluxSinkV1 sink = new InfluxSinkV1("http://localhost:" + INFLUX_PORT, USER, PASSWORD, DB_DATA);
    sink.open(null); // initialize without any special config

    // create a data point and send it through the sink
    sink.invoke(Point.measurement("telemetry")
            .time(Instant.now().toEpochMilli(), TimeUnit.MILLISECONDS)
            .addField("temperature", 42)
            .tag("location", "Paris")
            .build(), null);

    // query influxdb to select all telemetry data
    QueryResult res = influx.query(new Query("SELECT * FROM telemetry", DB_DATA));
    QueryResult.Series series = res.getResults()
            .get(0)
            .getSeries()
            .stream()
            .filter(s -> s.getName().equals("telemetry"))
            .findFirst()
            .orElseThrow(() -> new AssertionError("No telemetry series"));

    Map<String, Object> data = zip(series.getColumns(), series.getValues().get(0));

    // check that the data point is existing and correct
    assertEquals("Paris", data.get("location"));
    assertEquals(42.0, data.get("temperature"));
    sink.close();
}

Assuming that you have docker-compose running, as mentioned in the introduction, run this test with:

mvn clean test -Dtest=InfluxSinkV1Test

...
[INFO] Running io.streamroot.InfluxSinkV1Test
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.58 s - in io.streamroot.InfluxSinkV1Test
[INFO] 
[INFO] Results:
[INFO] 
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO] 
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  4.244 s
[INFO] Finished at: 2019-04-15T16:43:49+02:00
[INFO] ------------------------------------------------------------------------

Everything looks good! However there's an issue, writing data points one by one, at each call of invoke, is quite inefficient for InfluxDB so let's see what we can do about that.

Adding batching support - InfluxSinkV2

It turns out that the influx client has built-in support for batching ! So to use it we just need to call enableBatch as follows:

@Override
public void open(Configuration parameters) {
    influx = InfluxDBFactory.connect(connUrl, user, password);
    influx.enableBatch(BatchOptions.DEFAULTS.flushDuration(100)); // flush batch every 100 ms
}

As for the unit test we need to change it a bit to take into account the batching duration:

// ... same as before ...

Thread.sleep(150); // before querying influx, wait 100ms for flushDuration + 50ms for safety
QueryResult res = influx.query(new Query("SELECT * FROM telemetry", DB_DATA));

// ... same as before ...

However is it really that simple to handle batching properly ? What happens if a failure happens between two batches ?

Fully resilient implementation - InfluxSinkV3

Improving usability with a builder - InfluxSinkV4

Clone this wiki locally