Skip to content

Latest commit

 

History

History
69 lines (28 loc) · 3.27 KB

数据一致性.md

File metadata and controls

69 lines (28 loc) · 3.27 KB

定义

强一致

当更新操作完成之后,任何多个后续进程或者线程的访问都会返回最新的更新过的值。这种是对用户最友好的,就是用户上一次写什么,下一次就保证能读到什么。根据 CAP 理论,这种实现需要牺牲可用性。

弱一致性

系统并不保证续进程或者线程的访问都会返回最新的更新过的值。系统在数据写入成功之后,不承诺立即可以读到最新写入的值,也不会具体的承诺多久之后可以读到。

最终一致性

弱一致性的特定形式。系统保证在没有后续更新的前提下,系统最终返回上一次更新操作的值。在没有故障发生的前提下,不一致窗口的时间主要受通信延迟,系统负载和复制副本的个数影响。DNS 是一个典型的最终一致性系统。 在工程实践上,为了保障系统的可用性,互联网系统大多将强一致性需求转换成最终一致性的需求,并通过系统执行幂等性的保证,保证数据的最终一致性。

最终一致:事务处理过程中,会有短暂不一致的情况,但通过恢复系统,可以让事务的数据达到最终一致的目标。

考虑

强一致性

回滚的成本有点高,所以要看下是否有强一致性的要求?

逻辑简单:异步处理

保证服务接口的幂等性,消息日志可以存储到本地文本、数据库或消息队列,再通过业务规则自动或人工发起重试

多个事务:分布式事务转换为多个本地事务,然后依靠重试等方式达到最终一致性

业务逻辑无法保证幂等,则要增加一个去重表或者类似的实现:发消息的时候消息并不立即发出,而是向消息库插入一条消息记录,然后在事务提交的时候再异步将消息发出,发送消息如果成功则将消息库里的消息删除

方案

两阶段

补偿型:重试 或 回滚

WS-BusinessActivity提供了一种基于补偿的long-running的事务处理模型。还是上面的例子,服务器A的事务如果执行顺利,那么事务A就先行提交,如果事务B也执行顺利,则事务B也提交,整个事务就算完成。但是如果事务B执行失败,事务B本身回滚,这时事务A已经被提交,所以需要执行一个补偿操作,将已经提交的事务A执行的操作作反操作,恢复到未执行前事务A的状态。这样的SAGA事务模型,是牺牲了一定的隔离性和一致性的,但是提高了long-running事务的可用性。

异步确保型

将一些同步阻塞的事务操作变为异步的操作,避免对数据库事务的争用,典型例子是热点账户异步记账、批量记账的处理。

流程

一个完整的业务活动由一个主业务服务与若干从业务服务组成。

主业务服务负责发起并完成整个业务活动。

从业务服务提供 TCC(Try-Confirm-Cancel)型业务操作。

业务活动管理器控制业务活动的一致性,它登记业务活动中的操作,并在活动提交时确认所有的两阶段事务的 confirm 操作,在业务活动取消时调用所有两阶段事务的 cancel 操作。”

其他

流程和事务别搞混,可以强一致,可以弱一致。