Skip to content

Latest commit

 

History

History
120 lines (85 loc) · 3.58 KB

README.md

File metadata and controls

120 lines (85 loc) · 3.58 KB

Instance Shadow Detection (CVPR’ 20)

Tianyu Wang*, Xiaowei Hu*, Qiong Wang, Pheng-Ann Heng, and Chi-Wing Fu (* Joint first authors.)

[openaccess][arXiv] [BibTeX]

News: Our new work on instance shadow detection was accepted in CVPR 2021 as Oral presentation, check here!

-c

Instance shadow detection aims to find shadow instances paired with object instances. We present a dataset, a deep framework, and an evaluation metric to approach this new task. This repo is implemented on Detectron2.

Dependences

  • python>=3.6
  • torch (tested on 1.3.0+cu100 and 1.12.0+cu113)
  • torchvision (tested on 0.4.1+cu100 and 0.13.0+cu113)
  • tensorboard
  • cython
  • jupyter
  • scikit-image
  • numpy
  • opencv-python
  • pycocotools

Installation

Install LISA and pysobatools

$ cd InstanceShadowDetection
$ python setup.py install
$ cd PythonAPI
$ python setup.py install

Docker

$ cd InstanceShadowDetection/docker

$ docker build --network=host --tag="instanceshadow" -f ./Dockerfile .

$ docker run --gpus all -it --ipc=host --name=instanceshadow --network=host -v /YOURPATH:/data instanceshadow:latest

(Nvidia-docker)[https://github.com/NVIDIA/nvidia-docker] is needed.

Model, dataset and our results

Please download from Google Drive. Put the model and dataset follow the directory layout below.

.
├── ...
├── dataset
│   ├── SOBA                # put dataset here
├── InstanceShadowDetection # this repo
│   ├── projects
│   │   ├── LISA
│   │   │   ├── output_light
│   │   │   │   ├── last_checkpoint.pth
│   │   │   │   └── ...
│   │   │   └── ...
│   └── ...
└── ...

Demo

$ cd projects/LISA/
$ python demo.py --input ./demo/web-shadow0573.jpg --output ./ --config ./config/LISA_101_FPN_3x_demo.yaml

Train

$ python train_net.py --num-gpus 2 --config-file ./config/LISA_101_FPN_3x.yaml

Evaluation

$ python train_net.py --num-gpus 2 --config-file ./config/LISA_101_FPN_3x.yaml --eval-only --resume
$ python SOAP.py

Visualize

python visualize_json_results.py --ins_input ./output_light/inference/soba_instances_results.json --ass_input ./output_light/inference/soba_association_results.json --output ./output_light/results --dataset soba_cast_shadow_val_full

Citation

If you use LISA, SISS, SOBA, or SOAP, please use the following BibTeX entry.

@InProceedings{Wang_2020_CVPR,
author = {Wang, Tianyu and Hu, Xiaowei and Wang, Qiong and Heng, Pheng-Ann and Fu, Chi-Wing},
title = {Instance Shadow Detection},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

@InProceedings{Wang_2021_CVPR,
author    = {Wang, Tianyu and Hu, Xiaowei and Fu, Chi-Wing and Heng, Pheng-Ann},
title     = {Single-Stage Instance Shadow Detection With Bidirectional Relation Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month     = {June},
Year      = {2021},
pages     = {1-11}
}