-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
267 lines (242 loc) · 10 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from common import DistributionParams, Rescaler
from typing import List
from postprocess import Postprocess
from util import tile_images, softclamp5
# from tensorflow.python.training.tracking.data_structures import NonDependency
from decoder import Decoder, DecoderSampleCombiner
from encoder import Encoder
import tensorflow as tf
from tensorflow.keras import layers
from preprocess import Preprocess
from tensorflow_probability import distributions
import numpy as np
class NVAE(tf.keras.Model):
def __init__(
self,
n_encoder_channels,
n_decoder_channels,
res_cells_per_group,
n_preprocess_blocks,
n_preprocess_cells,
n_latent_per_group,
n_latent_scales,
n_groups_per_scale,
n_postprocess_blocks,
n_post_process_cells,
sr_lambda,
scale_factor,
total_epochs,
n_total_iterations,
step_based_warmup,
input_shape,
**kwargs
):
super().__init__(**kwargs)
self.sr_lambda = sr_lambda
self.preprocess = Preprocess(
n_encoder_channels,
n_preprocess_blocks,
n_preprocess_cells,
scale_factor,
input_shape,
)
self.n_latent_per_group = n_latent_per_group
self.n_latent_scales = n_latent_scales
self.n_groups_per_scale = n_groups_per_scale
self.n_total_iterations = n_total_iterations
self.n_preprocess_blocks = n_preprocess_blocks
mult = self.preprocess.mult
self.encoder = Encoder(
n_encoder_channels=n_encoder_channels,
n_latent_per_group=n_latent_per_group,
res_cells_per_group=res_cells_per_group,
n_latent_scales=n_latent_scales,
n_groups_per_scale=n_groups_per_scale,
mult=mult,
scale_factor=scale_factor,
input_shape=self.preprocess.output_shape_,
)
mult = self.encoder.mult
self.decoder = Decoder(
n_decoder_channels=n_decoder_channels,
n_latent_per_group=n_latent_per_group,
res_cells_per_group=res_cells_per_group,
n_latent_scales=n_latent_scales,
n_groups_per_scale=list(reversed(n_groups_per_scale)),
mult=mult,
scale_factor=scale_factor,
input_shape=self.encoder.output_shape_,
)
mult = self.decoder.mult
self.postprocess = Postprocess(
n_postprocess_blocks,
n_post_process_cells,
scale_factor=scale_factor,
mult=mult,
n_channels_decoder=n_decoder_channels,
)
# Updated at start of each epoch
self.epoch = 0
self.total_epochs = total_epochs
self.step_based_warmup = step_based_warmup
# Updated for each gradient pass, training step
self.steps = 0
def call(self, inputs, nll=False):
x = self.preprocess(inputs)
enc_dec_combiners, final_x = self.encoder(x)
# Flip bottom-up to top-down
enc_dec_combiners.reverse()
reconstruction, z_params, log_p, log_q = self.decoder(
final_x, enc_dec_combiners, nll=nll
)
reconstruction = self.postprocess(reconstruction)
return reconstruction, z_params, log_p, log_q
def train_step(self, data):
"""Training step for NVAE
Args:
data (Union[tf.Tensor, Tuple[tf.Tensor, Any]]): Labeled or unlabeled images
Returns:
dict[str, float]: All loss values
Notes
=====
Adapted from Keras tutorial https://keras.io/examples/generative/vae/
"""
if isinstance(data, tuple):
# We have labeled data. Remove the label.
data = data[0]
with tf.GradientTape() as tape:
reconstruction, z_params, *_ = self(data)
recon_loss = self.calculate_recon_loss(data, reconstruction)
bn_loss = self.calculate_bn_loss()
# warming up KL term for first 30% of training
warmup_metric = self.steps if self.step_based_warmup else self.epoch
beta = min(warmup_metric / (0.3 * self.n_total_iterations), 1)
activate_balancing = beta < 1
kl_loss = beta * self.calculate_kl_loss(z_params, activate_balancing)
loss = tf.math.reduce_mean(recon_loss + kl_loss)
total_loss = loss + bn_loss
gradients = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(gradients, self.trainable_weights))
self.steps += 1
return {
"loss": total_loss,
"reconstruction_loss": recon_loss,
"kl_loss": kl_loss,
"bn_loss": bn_loss,
}
def sample(self, n_samples=16, temperature=1.0, greyscale=True):
s = tf.expand_dims(self.decoder.h, 0)
s = tf.tile(s, [n_samples, 1, 1, 1])
z0_shape = tf.concat([[n_samples], self.decoder.z0_shape], axis=0)
mu = softclamp5(tf.zeros(z0_shape))
sigma = tf.math.exp(softclamp5(tf.zeros(z0_shape))) + 1e-2
if temperature != 1.0:
sigma *= temperature
z = self.decoder.sampler.sample(mu, sigma)
decoder_index = 0
last_s = None
# s should have shape 16,4,4,32
# z should have shape 8,4,4,20
for layer in self.decoder.groups:
if isinstance(layer, DecoderSampleCombiner):
if decoder_index > 0:
mu, log_sigma = self.decoder.sampler.get_params(
self.decoder.sampler.dec_sampler, decoder_index, s
)
mu = softclamp5(mu)
sigma = tf.math.exp(softclamp5(log_sigma)) + 1e-2
z = self.decoder.sampler.sample(mu, sigma)
last_s = s
s = layer(s, z)
decoder_index += 1
else:
s = layer(s)
reconstruction = self.postprocess(s)
distribution = distributions.Bernoulli(
logits=reconstruction, dtype=tf.float32, allow_nan_stats=False
)
if greyscale:
images = distribution.probs_parameter()
else:
images = distribution.sample()
z1 = self.decoder.sampler.sample(mu, sigma)
z2 = self.decoder.sampler.sample(mu, sigma)
# return images and mu, sigma, s used for sampling last hierarchical z in turn enabling sampling of images
return images, last_s, z1, z2
# As sample(), but starts from a fixed last hierarchical z given by mu, sigma and s. See sample() for details.
def sample_with_z(self, z, s):
last_gen_layer = self.decoder.groups[-1]
s = last_gen_layer(s, z)
reconstruction = self.postprocess(s)
distribution = distributions.Bernoulli(
logits=reconstruction, dtype=tf.float32, allow_nan_stats=False
)
images = distribution.mean()
return images
def calculate_kl_loss(self, z_params: List[DistributionParams], balancing):
# -KL(q(z1|x)||p(z1)) - sum[ KL(q(zl|x,z<l) || p(z|z<l))]
kl_per_group = []
# n_groups x batch_size x 4
loss = 0
for g in z_params:
term1 = (g.enc_mu - g.dec_mu) / g.dec_sigma
term2 = g.enc_sigma / g.dec_sigma
kl = 0.5 * (term1 * term1 + term2 * term2) - 0.5 - tf.math.log(term2)
kl_per_group.append(tf.math.reduce_sum(kl, axis=[1, 2, 3]))
# balance kl
if balancing:
# Requires different treatment for encoder and decoder?
kl_alphas = self.calculate_kl_alphas(
self.n_latent_scales, self.n_groups_per_scale
)
kl_all = tf.stack(kl_per_group, 0)
kl_coeff_i = tf.reduce_mean(tf.math.abs(kl_all), 1) + 0.01
total_kl = tf.reduce_sum(kl_coeff_i)
kl_coeff_i = kl_coeff_i / kl_alphas * total_kl
kl_coeff_i = kl_coeff_i / tf.reduce_mean(kl_coeff_i, 0, keepdims=True)
temp = tf.stack(kl_all, 1)
# We stop gradient through kl_coeff_i because we are only interested
# in changing the magnitude of the loss, not the direction of the
# gradient.
loss = tf.reduce_sum(temp * tf.stop_gradient(kl_coeff_i), axis=[1])
else:
loss = tf.math.reduce_sum(
tf.convert_to_tensor(kl_per_group, dtype=tf.float32), axis=[0]
)
return loss
# Calculates the balancer coefficients alphas. The coefficient decay for later groups,
# for which original paper offer several functions. Here, a square function is used.
def calculate_kl_alphas(self, num_scales, groups_per_scale):
coeffs = []
for i in range(num_scales):
coeffs.append(
np.square(2 ** i)
/ groups_per_scale[num_scales - i - 1]
* tf.ones([groups_per_scale[num_scales - i - 1]], tf.float32,)
)
coeffs = tf.concat(coeffs, 0)
coeffs /= tf.reduce_min(coeffs)
return coeffs
def on_epoch_begin(self, epoch, logs=None):
self.epoch = epoch
def calculate_recon_loss(self, inputs, reconstruction, crop_output=False):
if crop_output:
inputs = inputs[:, 2:30, 2:30, :]
reconstruction = reconstruction[:, 2:30, 2:30, :]
log_probs = distributions.Bernoulli(
logits=reconstruction, dtype=tf.float32, allow_nan_stats=False
).log_prob(inputs)
return -tf.math.reduce_sum(log_probs, axis=[1, 2, 3])
def calculate_bn_loss(self):
bn_loss = 0
def update_loss(layer):
nonlocal bn_loss
if isinstance(layer, layers.BatchNormalization):
bn_loss += tf.math.reduce_max(tf.math.abs(layer.weights[0]))
elif hasattr(layer, "layers"):
for inner_layer in layer.layers:
update_loss(inner_layer)
for model in [self.encoder, self.decoder]:
for layer in model.groups:
update_loss(layer)
return self.sr_lambda * bn_loss