-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathneville.py
36 lines (31 loc) · 1007 Bytes
/
neville.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from math import exp
def neville(x, nodes):
"""
Implementation of Neville's method
Parameters:
x - point to estimate f at
nodes - list containing known points on f(x)
Output:
List of lists containing the iterations
The (only) element of the last list contains the final approximation
For the rest, p[i][j] = f[xj,...,xj+i]
For example,
p[0][0] = f[x0]
p[1][2] = f[x2,x3]
p[2][3] = f[x3,x4,x6]
etc.
"""
p = [ [y for (x, y) in nodes] ]
i = 1 # len(nodes)-i gives us the number of elements in the last array of p
while len(nodes)-i > 0:
iteration = []
for j in range(0,len(nodes)-i):
iteration.append( ((x-nodes[j][0])*p[-1][j+1] - (x-nodes[j+i][0])*p[-1][j]) / (nodes[j+i][0]-nodes[j][0]) )
p.append(iteration)
i = i + 1
return p
nodes = [(1,0.75), (1.3,0.63), (1.5,0.55), (2,0.49)]
p = neville(1.6,nodes)
# p[i][0] = f[x0,...,xi]
# p[i][1] = f[x1,...,xi+1]
# etc.