Numerical experiments for evaluating the performance of Mr. Ash and other linear regression methods that are well suited for large-scale (possibly sparse) data sets. This is a reproduction, using DSC, of the workflow for the Mr.ASH manuscript by Kim, Wang, Carbonetto and Stephens (2020). See also dsc-linreg.
The prediction errors of the different methods can be seen here: Comparison of prediction errors
Methods in the pipeline require external R packages, which can be installed using
install.packages(c("devtools", "ggplot2", "glmnet", "L0Learn", "BGLR", "ncvreg"))
devtools::install_github("stephenslab/susieR")
devtools::install_github("pcarbo/varbvs",subdir = "varbvs-R")
devtools::install_github("stephenslab/mr.ash.alpha")
devtools::install_github("stephenslab/ebmr.alpha")
The external python packages can be installed using
conda install --copy nose numpy scipy matplotlib pywavelets scikit-learn
git clone [email protected]:GAMPTeam/vampyre.git
cd vampyre
pip install -e .
pip install git+git://github.com/stephenslab/ebmrPy
Note: vampyre
has some module dependency issues if I try to install it directly from github.
cd dsc
dsc linreg.dsc --target [TARGET] --host [HOSTFILE]
[TARGET] can be linreg
or trendfilter
.
There are two [HOSTFILE]:
gwdg.yml
for running on MPIBPC GWDG clustermidway2.yml
for running on UChicago RCC cluster
To check and debug
dsc linreg.dsc --truncate -o ../dsc_result_trial --host gwdg.yml