You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Describe the bug
When I use Pathfinder to get inits I get "mismatch in number dimensions declared" as error for some models.
To Reproduce
Reprex:
library(tidyverse)
library(janitor)
#> #> Attaching package: 'janitor'#> The following objects are masked from 'package:stats':#> #> chisq.test, fisher.test
library(nlme)
#> #> Attaching package: 'nlme'#> The following object is masked from 'package:dplyr':#> #> collapse
library(cmdstanr)
#> This is cmdstanr version 0.8.1#> - CmdStanR documentation and vignettes: mc-stan.org/cmdstanr#> - CmdStan path: C:/Users/STBE21/.cmdstan/cmdstan-2.35.0#> - CmdStan version: 2.35.0
library(brms)
#> Loading required package: Rcpp#> Loading 'brms' package (version 2.21.3). Useful instructions#> can be found by typing help('brms'). A more detailed introduction#> to the package is available through vignette('brms_overview').#> #> Attaching package: 'brms'#> The following object is masked from 'package:stats':#> #> ar
BodyWeight %>%
as_tibble() %>%
clean_names() %>%
mutate(time2=time %>% factor %>% as.numeric()) ->body_weight
brm(data=body_weight, formula=weight~diet+ ar(p=1, time=time2, gr=rat)+(1|rat), backend="cmdstanr", cores=6, chains=6, empty=T) ->brm_emptycmdstanr::write_stan_file(brm_empty$model) %>%
cmdstan_model(cpp_options=list(stan_threads=TRUE)) ->model_cmdstanmodel_cmdstan$pathfinder(data= make_standata(data=body_weight,
formula=weight~diet+ ar(p=1, time=time2, gr=rat)+(1|rat)),
init=2, history_size=100,
num_threads=6,
num_paths=6) ->pathfinder_inits#> Path [1] :Initial log joint density = -2354013.421594 #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite function evaluation. #> Path [4] :Initial log joint density = -2837875.019409 #> Path [2] :Initial log joint density = -13657453.097900 #> Path [3] :Initial log joint density = -5782846.815396 #> Path [6] :Initial log joint density = -21086717.897784 #> Path [5] :Initial log joint density = -117122627.277960 #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite function evaluation. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite function evaluation. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite function evaluation. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite function evaluation. #> Error evaluating model log probability: Non-finite gradient. #> Error evaluating model log probability: Non-finite gradient. #> Path [4] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 88 -5.855e+02 4.938e-04 9.595e-02 1.000e+00 1.000e+00 2201 -3.697e+03 -3.697e+03 #> Path [4] :Best Iter: [40] ELBO (-662.093438) evaluations: (2201) #> Path [5] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 99 -5.855e+02 2.429e-02 1.419e+01 1.000e+00 1.000e+00 2476 -7.844e+02 -7.844e+02 #> Path [5] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 115 -5.854e+02 3.519e-04 7.368e-02 7.838e-01 7.838e-01 2876 -1.467e+03 -1.467e+03 #> Path [5] :Best Iter: [60] ELBO (-662.139363) evaluations: (2876) #> Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 99 -1.484e+03 4.062e-02 1.668e+02 3.698e-01 3.698e-02 2476 -1.613e+03 -1.613e+03 #> Path [1] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 99 -5.854e+02 4.431e-04 1.919e-01 4.818e-01 4.818e-01 2476 -9.339e+02 -9.339e+02 #> Path [1] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 100 -5.854e+02 5.683e-04 8.569e-02 1.000e+00 1.000e+00 2501 -8.646e+02 -8.646e+02 #> Path [1] :Best Iter: [49] ELBO (-661.727387) evaluations: (2501) #> Path [6] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 99 -5.864e+02 4.325e-04 6.753e+00 1.000e+00 1.000e+00 2476 -6.850e+02 -6.850e+02 #> Path [2] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 99 -5.855e+02 5.448e-03 2.277e+01 1.000e+00 1.000e+00 2476 -6.847e+02 -6.847e+02 #> Path [2] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 123 -5.854e+02 4.205e-04 1.956e-01 4.433e-01 4.433e-01 3076 -1.200e+03 -1.200e+03 #> Path [2] :Best Iter: [101] ELBO (-681.050138) evaluations: (3076) #> Path [6] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 153 -5.853e+02 8.429e-04 2.050e-01 1.000e+00 1.000e+00 3826 -4.474e+03 -4.474e+03 #> Path [6] :Best Iter: [127] ELBO (-679.735085) evaluations: (3826) #> Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 199 -1.463e+03 4.024e-02 2.453e+03 1.880e-01 1.880e-01 4976 -1.618e+03 -1.618e+03 #> Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 299 -1.415e+03 2.415e-01 1.322e+05 1.698e-01 3.418e-01 7476 -1.606e+03 -1.606e+03 #> Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 399 -1.314e+03 3.157e-01 1.600e+06 6.980e-01 6.980e-01 9976 -1.785e+03 -1.785e+03 #> Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes #> 492 -6.218e+02 1.854e-05 3.144e+04 8.008e-01 8.008e-01 12301 -3.149e+04 -3.149e+04 #> Path [3] :Best Iter: [383] ELBO (-1566.436377) evaluations: (12301) #> Total log probability function evaluations:32631 #> Pareto k value (1.4) is greater than 0.7. Importance resampling was not able to improve the approximation, which may indicate that the approximation itself is poor. #> Finished in 0.3 seconds.
model_cmdstan$sample(data= make_standata(data=body_weight,
formula=weight~diet+ ar(p=1, time=time2, gr=rat)+(1|rat)),
init=pathfinder_inits,
threads_per_chain=1,
parallel_chains=6,
chains=6) ->samples#> Running MCMC with 6 parallel chains, with 1 thread(s) per chain...#> Chain 1 Unrecoverable error evaluating the log probability at the initial value.#> Chain 1 Exception: mismatch in number dimensions declared and found in context; processing stage=parameter initialization; variable name=z_1; dims declared=(1,16); dims found=(16) (in 'C:/Users/STBE21/AppData/Local/Temp/Rtmp08oU96/model-b0542cd44c4b.stan', line 38, column 2 to column 29)#> Chain 2 Unrecoverable error evaluating the log probability at the initial value.#> Chain 2 Exception: mismatch in number dimensions declared and found in context; processing stage=parameter initialization; variable name=z_1; dims declared=(1,16); dims found=(16) (in 'C:/Users/STBE21/AppData/Local/Temp/Rtmp08oU96/model-b0542cd44c4b.stan', line 38, column 2 to column 29)#> Chain 3 Unrecoverable error evaluating the log probability at the initial value.#> Chain 3 Exception: mismatch in number dimensions declared and found in context; processing stage=parameter initialization; variable name=z_1; dims declared=(1,16); dims found=(16) (in 'C:/Users/STBE21/AppData/Local/Temp/Rtmp08oU96/model-b0542cd44c4b.stan', line 38, column 2 to column 29)#> Chain 4 Unrecoverable error evaluating the log probability at the initial value.#> Chain 4 Exception: mismatch in number dimensions declared and found in context; processing stage=parameter initialization; variable name=z_1; dims declared=(1,16); dims found=(16) (in 'C:/Users/STBE21/AppData/Local/Temp/Rtmp08oU96/model-b0542cd44c4b.stan', line 38, column 2 to column 29)#> Chain 5 Unrecoverable error evaluating the log probability at the initial value.#> Chain 5 Exception: mismatch in number dimensions declared and found in context; processing stage=parameter initialization; variable name=z_1; dims declared=(1,16); dims found=(16) (in 'C:/Users/STBE21/AppData/Local/Temp/Rtmp08oU96/model-b0542cd44c4b.stan', line 38, column 2 to column 29)#> Chain 6 Unrecoverable error evaluating the log probability at the initial value.#> Chain 6 Exception: mismatch in number dimensions declared and found in context; processing stage=parameter initialization; variable name=z_1; dims declared=(1,16); dims found=(16) (in 'C:/Users/STBE21/AppData/Local/Temp/Rtmp08oU96/model-b0542cd44c4b.stan', line 38, column 2 to column 29)#> Warning: Chain 1 finished unexpectedly!#> Warning: Chain 2 finished unexpectedly!#> Warning: Chain 3 finished unexpectedly!#> Warning: Chain 4 finished unexpectedly!#> Warning: Chain 5 finished unexpectedly!#> Warning: Chain 6 finished unexpectedly!#> Warning: All chains finished unexpectedly! Use the $output(chain_id) method for more information.#> Warning: Use read_cmdstan_csv() to read the results of the failed chains.#> Warning: No chains finished successfully. Unable to retrieve the fit.
Describe the bug
When I use Pathfinder to get inits I get "mismatch in number dimensions declared" as error for some models.
To Reproduce
Reprex:
Created on 2024-06-07 with reprex v2.1.0
Operating system
Windows 10.
CmdStanR version number
The text was updated successfully, but these errors were encountered: